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PREFACE

If an apology be expected for putting forth yet another Text-book for the use
of Students of Geometry, it must be based on the Author’s experience—when
training engineering students for theChineseGovernment and in the positions
he now holds—that a small volume upon the plan attempted to be carried out
in the following pages is required bymany students, more especially thosewho
have to take up Geometry as part of their professional training as engineers.

The aim and scope of the work will be found explained in the Introduction
(pp. 1, 2).

It is right that the Author should acknowledge here his great indebtedness
to the German treatise of Schlomilch.

University College, London.
October, 1903
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INTRODUCTION.

Etymologically the word geometry signifies the measurement of the earth.
Geometry had its origin in the practical needs of the Egyptians, but Thales

of Miletus, about 600 B.C., first dealt with the subject in an abstract manner.
Pythagoras and his school greatly added to the science, and Euclid, who taught
at Alexandria about 300B.C. collected together and arranged the labours of his
predecessors in the famous “Elements,” which consists of thirteen books. This
treatise has been in use up to the present time, with the exception of Books
VII., VIII., IX., and X., which treat of Greek arithmetic and incommensurable
magnitudes, and Book XIII., which treats of the regular solids.

The first six Books contain 164 propositions, and the XIth and XIIth Books
58 propositions. The greater number of these are merely links in the chain
of reasoning by which the more important results are deduced. By starting
with the theory of parallel lines, continental mathematicians have shown that
a large number of the less important propositions can be omitted, and the same
results obtained, without affecting the precision of the method; and this is the
course adopted in the present work.

Moreover, by introducing early the idea of ratio, many of Euclid’s proofs
are materially simplified, so that although, in the words of Euclid to Ptolemy,
there may be no royal road to geometry, it is believed that the student may find
in the following pages an easier guide to his requirements than our ordinary
text-books.

It will be noted that the definitions of terms are distributed throughout the
work as required for the elucidation of successive Propositions, and that in
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the case of many Propositions corollaries are stated, and examples appended,
where deemed advisable.

Symbols.—The following symbols are commonly used for the sake of ab-
breviation:—

∴ meaning therefore. ∠ meaning angle.
∵ " because. △ " triangle.
= " equal to. ▱ " parallelogram.
∥ " parallel to. ○ " circle.
+ " addition. − " subtraction.



GEOMETRY FOR TECHNICAL
STUDENTS.

Preliminary Definitions.

1. Geometry.—Geometry is the science which treats of the properties of
space.

The object of geometry is, starting from facts whose truth is universally
recognised, to deduce therefrom results, the truth of which, being less appar-
ent, can only be established by a chain of connected reasoning.

2. Axiom.—Self-evident facts are in geometry called Axioms—for exam-
ple, “The whole of a thing is greater than a part of it;” “If equals be added to
equals the wholes are equal;” and so on. Such axioms must be admitted as
fundamental truths, for no proof can make them clearer.

3. Proposition.—A Proposition is the statement of something which it is
required to do. Propositions are divided into Problems and Theorems.

4. Problem.—A Problem is a proposition which states that a certain thing
is required to be done; e.g., “To bisect a given angle.”

5. Theorem.—A Theorem is a proposition which states that a certain as-
sertion is to be proved true; e.g., “Any two sides of a triangle are together greater
than the third.”

6. Hypothesis.—A Theorem consists of two parts; viz., the Hypothesis,
or assumption; and the Conclusion, or that which follows from the reasoning
based on the hypothesis. Thus,

8



9

If two sides of a triangle are equal (hypothesis)
The angles opposite to those sides are equal (conclusion).

7. Converse.—One Theorem is said to be the Converse of another, when
the hypothesis and conclusion are interchanged. Thus, the converse of the
above theorem would be

If two angles of a triangle are equal (hypothesis)
The sides opposite to those angles are equal (conclusion).

8. Corollary.—Corollary is a deductionwhich follows easily from a propo-
sition already established.

The Elements of Geometrical Form.

9. Point.—A Point is the smallest magnitude that can be imagined. It has
no dimensions, that is, it has no measurement in any direction.

If a point be represented by a dot, this must only be regarded as a picture
to show that the point has a certain position roughly indicated by the dot.

10. Line.—When a point moves it generates a Line.
A line has one dimension—length; thus,𝐴𝐵 is a line gen-
erated by a point which starts from 𝐴, and moves to 𝐵,
along the path indicated by the line.

11. Surface.—In general, when a straight line
moves, it generates a Surface. A surface has two dimen-
sions at right angles to each other—length and breadth;
thus, if the line𝐴𝐵move to 𝐶𝐷 along the path indicated,
it will generate the surface 𝐴𝐵𝐶𝐷

12. Solid.—In general, when a surface moves it generates a solid. A
solid has three dimensions at right angles to one another—length, breadth, and
thickness; thus, if a surface𝐴𝐵𝐶𝐷move to𝐴′𝐵′𝐶′𝐷′, it will generate the solid
shown.
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When a solid moves it generates another solid; con-
sequently geometrical forms may be divided into points,
lines, surfaces, and solids.

The Line.

13. StraightLine—14. CurvedLine.—Lines are either straight or curved.
A straight line is a linewhich is generated by a pointmoving always in the same
direction, and is therefore the shortest distance between its extreme points.
When a point continually changes its direction ofmotion, it generates a curved
line.

A line may be affected in four ways; it may have

1. Sense; that is, it may be generated by the movement of a point from one
extremity to the other, or vice versâ, as, from 𝐴 to 𝐵 in the one sense, or
from 𝐵 to 𝐴 in the other.

2. Direction; that is, it has a definite inclination relatively to some fixed
standard.

3. Position; that is, it has a definite place.

4. Magnitude; that is, it has a certain length.

The word line will, when used alone, signify a straight line.

Two Lines.

15. Angle—Right Angle—Perpendicular—Acute Angle—Obtuse
Angle—Reflex Angle.—An Angle is the inclination of two lines to one an-
other. Angles may be measured by the rotation of one of these lines relatively
to the other. One-fourth of a complete revolution is called a right angle, and
the lines are then said to be perpendicular to one another.
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An acute angle is an angle less than a right angle.
An obtuse angle is an angle greater than one and less than two right angles.
An angle greater than two right angles is called a reflex, or convex, angle.
In practice, it is found convenient to measure angles by dividing a com-

plete revolution into 360 equal parts, or degrees; these are sub-divided into 60
equal parts, or minutes; and these again into 60 equal parts, or seconds. Thus
35°4′22′′ denotes an angle of 35 degrees 4 minutes 22 seconds. A right angle
is, of course, 90°.

16. Complement.—When two angles together make a right angle, either
of them is said to be the complement of the other.

17. Supplement.—When two angles together make two right angles, ei-
ther of them is said to be the supplement of the other.

18. Parallel.—When the angle between two lines is zero, the lines are
parallel.

PROPOSITION 1.

When two lines cut one another, the opposite angles are equal.

Let 𝐴𝐵, 𝐶𝐷 cut one another in 𝐸.
Now, if 𝐴𝐵 be supposed to rotate about 𝐸, until it co-

incide with 𝐶𝐷, the parts 𝐴𝐸 and 𝐸𝐵, since they turn
together, must move through equal angles.

Consequently the angles 𝐴𝐸𝐶, 𝐵𝐸𝐷, generated by rotation contra-
clockwise, must be equal.

So also must the angles 𝐴𝐸𝐷, 𝐵𝐸𝐶, which are generated when the coinci-
dence is effected by clockwise rotation.

Three Lines.

19.—When a line intersects two other lines, it makes with them eight an-
gles, 1, 2, 3, 4, 5, 6, 7, 8.
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Of these—
1 and 5, 2 and 6, 3 and 7, 4 and 8 are called corre-

sponding ∠s.
4 and 6, 3 and 5 are called alternate ∠s.
1, 2, 7 and 8 are called exterior ∠s.
3, 4, 5 and 6 are called interior ∠s.

PROPOSITION 2.

If one line meet two parallel lines (i.) the corresponding angles are
equal; (ii.) the alternate angles are equal; (iii.) the exterior angles, and
(iv.) the interior angles, on the same side of the line, are together equal
to two right angles.

Let 𝐴𝐵, 𝐴′𝐵′ be any two parallel lines, and let 𝐶𝐷 meet them. Then since
𝐶𝐷 is equally inclined to both of them—

∠1 = ∠5;∠2 = ∠6;∠3 = ∠7;∠4 = ∠8 (by def. 19).

I.e., the corresponding ∠s are equal. (i.)
Again, since ∠4 = ∠8, 𝑎𝑛𝑑∠6 = ∠8 (Prop. 1)

∴∠4 = ∠6

Similarly, it may be proved that ∠3 = ∠5.

I.e., the alternate ∠s are equal. (ii.)

Again, since ∠1 + ∠4 = 2 rt. ∠s
and ∠4 = ∠8 (by (i.))
∴ ∠1 + ∠8 = 2 rt. ∠s

Similarly, it may be proved that ∠2 + ∠7 = 2 rt. ∠s.
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I.e., the exterior ∠s on the same side of the line are together equal to 2 rt. ∠s. (iii.)

Finally, since ∠3 + ∠4 = 2 rt. ∠s
and ∠4 = ∠6 (by (ii.))
∴ ∠3 + ∠6 = 2 rt. ∠s.

Similarly, it may be proved that ∠4 + ∠5 = 2 rt. ∠s.

I.e., the interior∠s on the same side of the line are together equal to 2 rt. ∠s. (iv.)

Corollary.—The converse of this proposition is obviously true also, viz.,
that if any of the statements (i.), (ii.), (iii.), or (iv.) be true, the lines 𝐴𝐵, 𝐴′𝐵′

must be parallel; for if they be not parallel, those statements cannot be true.

Example 1.

(i.) In calculating the horizontal
distance𝐴𝑆 of a ship 𝑆 from the point
𝐴, vertically beneath the point of ob-
servation 𝑇, the angle of depression
𝐻𝑇𝑆 is observed through which it is
necessary to depress the instrument
in order to sight on 𝑆. Then, since

𝑇𝐻 and 𝐴𝑆 are parallel, ∠𝐴𝑆𝑇 = ∠𝑆𝑇𝐻 (by Prop. 2 (ii.)), and this, with the
measurement of𝐴𝑇, enables the triangle to be drawn, or calculated. (See Prop.
5.)

Example 2.

The fact that when corresponding ∠s are equal the lines are
parallel, ismade use of by draughtsmen in drawing parallel lines;
a straight-edge 𝐴𝐵 and set-square are employed. A line being
drawn at 𝐸𝐷, the square 𝐶𝐸𝐷 may be moved along the straight-
edge to any position𝐶′𝐸′𝐷′, and a line𝐸′𝐷′ drawn. This linewill
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be parallel to 𝐸𝐷, for the corresponding ∠s 𝐶𝐸𝐷, 𝐶′𝐸′𝐷′ are equal. (By Prop.
2 (i.).)

20. Triangle.—When no two of three given lines are parallel they intersect
in pairs, and form a Triangle, whose properties we next proceed to investigate.

Triangles.

21. Equilateral triangle.—A triangle is equilateral when its sides are of
equal length.

22. Isosceles triangle.—A triangle is isosceles when any two of its sides
are of equal length.

PROPOSITION 3.

In any triangle, an exterior angle is equal to the two interior oppo-
site angles.

Let 𝐴𝐵𝐶 be any△, and let any side 𝐶𝐵 be pro-
duced to 𝐷. Then if 𝐵𝐸 be a line parallel to 𝐶𝐴, 𝐵𝐸
and 𝐶𝐴 are equally inclined to 𝐶𝐷.

∴ ∠𝐷𝐵𝐸 = ∠𝐵𝐶𝐴 (Prop. 2 (i.).)

𝑎𝑙𝑠𝑜∠𝐸𝐵𝐴 = ∠𝐵𝐴𝐶 (Prop. 2 (ii.).)

∴ the whole ∠𝐷𝐵𝐴 = ∠𝐵𝐶𝐴 + ∠𝐵𝐴𝐶.

Corollary.—An exterior angle of a triangle is greater than either of the
interior opposite angles.

Example.

To calculate the height 𝐴𝑇 of an inaccessible object, on level ground, a
base-line 𝐵𝐶 is measured, and the angles 𝐴𝐵𝑇, 𝐵𝐶𝑇 are observed.
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In order to calculate 𝐴𝑇 it is necessary to know the
angle 𝐵𝑇𝐶. But by Prop. 3 ∠𝐴𝐵𝑇 = ∠𝐵𝑇𝐶 + ∠𝐵𝐶𝑇

∴ ∠𝐵𝑇𝐶 = ∠𝐴𝐵𝑇 − ∠𝐵𝐶𝑇.

PROPOSITION 4.

The interior angles of any triangle are together equal to two right
angles.

Let 𝐴𝐵𝐶 be any triangle, and let any side 𝐶𝐵 be produced to 𝐷, then
∠𝐷𝐵𝐴 = ∠𝐵𝐶𝐴 + ∠𝐵𝐴𝐶. (Prop. 3.)

Add to each the ∠𝐴𝐵𝐶, then ∠𝐷𝐵𝐴 + ∠𝐴𝐵𝐶 =
∠𝐵𝐶𝐴 + ∠𝐵𝐴𝐶 + ∠𝐴𝐵𝐶

but ∠𝐷𝐵𝐴 + ∠𝐴𝐵𝐶 = 2 rt. ∠s
∴ ∠ s 𝐵𝐶𝐴, 𝐵𝐴𝐶, 𝐴𝐵𝐶 = 2 rt. ∠s.

Cor. 1.—Any two angles of a triangle are together less than two right an-
gles.

Cor. 2.—All the interior angles of any polygon = twice as many right an-
gles as the polygon has sides, less four right angles.

For since any polygon 𝐴𝐵𝐶𝐷𝐸 of 𝑛 sides may be divided into two less△s
than there are sides, that is 𝑛 − 2△s, and since each△ contains two rt. ∠s,
the sum of all the ∠s must be 2𝑛 − 4 rt. ∠s.

Example 1.

If the interior angles of a quadrilateral are 60°, 125°and 160°, find the re-
maining angle.

Answer 15°.
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Example 2.

The interior angles of a six-sided polygon were observed to be 80°, 160°,
125°, 82°, 150°and 122°. What was the total error in the observations?

Answer 1°.

Conditions which determine a Triangle.

23. A triangle is said to be determined, when any other triangle constructed
from the same data is congruentwith it, that is to say, identical in every respect
with it.

A triangle cannot be determined unless three parts at least are given.
Hence there are four cases to consider:—

(i) When three angles are given.

(ii) When two angles and a side are given.

(iii) When one angle and two sides are given.

(iv) When three sides are given.

In the first case it is evident that any number of triangles can be drawn,
having the angles in each respectively equal, and therefore, in this case, the
triangle is not determined.

PROPOSITION 5.

A triangle is determined when two angles are given, and a side
which is known to be either opposite or adjacent to these angles.

Suppose any side 𝐴𝐵 to be given, which is adjacent to the given angles 𝐴
and 𝐵.
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The directions of 𝐴𝐶 and 𝐵𝐶 are determined, be-
cause the angles 𝐵𝐴𝐶,𝐴𝐵𝐶 are known. Hence the point
𝐶, where 𝐴𝐶 and 𝐵𝐶 intersect, is determined.

Again, if the ∠s𝐴 and 𝐶 are given and the side𝐴𝐵 opposite to one of these
∠s; then since ∠𝐵 can be found (Prop. 4), the ∠s 𝐴 and 𝐵 are known, and this
case becomes the same as the last, and the△ is therefore determined.

Cor. 1.—Two triangles are congruent, when two angles in the one are
equal to two angles in the other, and a side in each, either opposite or adjacent
to one of the equal angles, are equal. For these triangles, being determined by
the same data, must be identical.

Cor. 2.—If any two angles 𝐶𝐴𝐵, 𝐶𝐵𝐴 in a triangle are equal, it follows,
on supposing the angle at 𝐶 bisected by 𝐶𝐷, that the sides 𝐶𝐵, 𝐶𝐴 opposite
the equal angles are equal. For in this case the angles 𝐶𝐴𝐷, 𝐶𝐵𝐷 have two
angles and a side in each equal. Therefore by Cor. 1 they are congruent, and
𝐴𝐶 = 𝐵𝐶.

Cor. 3.—If a triangle be equiangular, it is also equilateral. This follows
immediately from Cor. 2.

Example.

Suppose it required to measure
the width between𝐴 and 𝐶 on oppo-
site banks of a river. Measure a base-
line 𝐴𝐵 on one side of the river, and
at its extremities measure the angles

𝐴𝐵𝐶, 𝐶𝐴𝐵. Then the width𝐴𝐶 is determined either by drawing to scale or by
calculation (Prop. 5).

PROPOSITION 6.

A triangle is determined when one angle and two sides are given;
exceptwhen the given angle lies opposite the smaller of the given sides;
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in which case there are two triangles having supplementary angles.

Case 1.—When the given angle is included by the given sides.
Let 𝐵𝐴𝐶 be the given angle, and 𝐴𝐵, 𝐴𝐶 the given

sides.
Then since only one straight line can be drawn be-

tween 𝐵 and 𝐶, the triangle is determined.

Cor. 1.—If the given side 𝐵𝐴 = the given side 𝐶𝐴,
and 𝐴𝐷 be the line which by supposition bisects the an-
gle 𝐵𝐴𝐶, then in the△s 𝐴𝐵𝐷, 𝐴𝐶𝐷, the sides 𝐴𝐵, 𝐴𝐷 in the one are = the
sides𝐴𝐶,𝐴𝐷 in the other, and the included∠s are equal; the△ s are therefore
congruent (by the preceding), and ∠𝐴𝐵𝐶 = ∠𝐴𝐶𝐵.

I.e., the angles at the base of an isosceles triangle are equal.

Cor. 2.—An equilateral triangle is also equiangular. This follows imme-
diately from the preceding.

Case 2.—When the given angle is not included by the given sides.
Let the sides𝐴𝐵, 𝐵𝐶 and the ∠𝐴 be given; and first, let the greater side 𝐵𝐶

be opposite the given ∠𝐴.
Then since the point 𝐶 must lie

on 𝐴𝐶 or 𝐴𝐶 produced, and must
also be at a distance from 𝐵 = 𝐵𝐶,
it must lie somewhere on the circle
whose centre is 𝐵 and radius 𝐵𝐶, and
must therefore be either at 𝐶 or 𝐶′

where the line 𝐴𝐶 cuts the circle. In
the first case we have the△𝐴𝐵𝐶, and in the second case we have the△𝐴𝐵𝐶′.
But of these, the△𝐴𝐵𝐶 alone contains the given ∠𝐴. Therefore the△ is de-
termined.

Next, let 𝐵𝐶 opposite the given∠𝐴, be the smaller side.
In this case the point 𝐶′ lies between 𝐴 and 𝐶, and we get two△s 𝐴𝐵𝐶,

𝐴𝐵𝐶′, both having their sides 𝐴𝐵, 𝐵𝐶
and 𝐴𝐵, 𝐵𝐶′ equal to the given sides, and containing the given ∠𝐴.
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In this case, therefore, there are two△s satisfy-
ing the data, but the ∠s 𝐵𝐶𝐴, 𝐵𝐶′𝐴 are supplemen-
tary.

This case is known as the “ambiguous case.”

Cor. 3.—Triangles are congruent when one angle and two sides in each
are equal, except when the given angle lies opposite the smaller of the given
sides, in which case the triangles may be congruent or may have supplemen-
tary angles.

PROPOSITION 7.

A triangle is determined when the three sides are given.

Let 𝐴𝐵 be one of the sides.
Then, since the vertex of the△ must lie on the

circumference of a circle whose centre is 𝐴 and ra-
dius 𝐴𝐶, equal to one of the remaining sides, and
likewise on the circumference of a circle whose cen-
tre is 𝐵 and radius 𝐵𝐶, equal to the third side, it must
be either at 𝐶 or 𝐶′, the points where these circles
cut one another. But, from the nature of the con-

struction, 𝐴𝐵 is an axis of symmetry, and therefore the △s 𝐴𝐵𝐶, 𝐴𝐵𝐶′ are
congruent.

Cor. 1.—Triangleswhich have the three sides of the one equal respectively
to the three sides of the other, are congruent.

Hence, triangles are congruent, if
(i) two angles and a corresponding side in each, are equal;
(ii) one angle and two sides in the one are equal to one angle and two sides

in the other, except when the given angle is opposite the smaller side; in which
case two triangles can be formed, one of which is congruent with the first, and
the other not;

(iii) the three sides in the one are equal to the three sides in the other; that
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is to say, if in two triangles three elements in the one are known to be equal to
the three corresponding elements in the other, the triangles are congruent in
all cases, except

(i) when three angles are equal.

(ii) in the ambiguous case.

Practical applications of the congruence of triangles:—
1. To determine the position of a point by offsets from a

straight line.
Suppose 𝐴𝐵 to be a survey line, and it is required to fix the

position of the corners of a building 𝐷, 𝐸 with respect to it. Take
any convenient points 𝐴, 𝐶, 𝐵 in the line, and measure 𝐵𝐷, 𝐶𝐷,
𝐶𝐸, 𝐴𝐸. Then the△s 𝐵𝐶𝐷, 𝐴𝐶𝐸 are determined. (Prop. 7.)

2. Let it be required to determine an angle 𝐴𝐵𝐶 with
a chain only. Produce 𝐶𝐵 to any convenient length 𝐵𝐷.
Set off the same or any other convenient length 𝐵𝐸 along
𝐵𝐴, and measure 𝐷𝐸. Then the△𝐷𝐵𝐸 is determined,
and therefore also the ∠𝐶𝐵𝐸, which is supplementary to it. (Prop. 7.)

3. To measure an inaccessible distance by means of a
chain only. (Prop. 6.)

Let 𝐴𝐵 be the inaccessible distance.
Take any convenient point 𝐶, and produce 𝐴𝐶, 𝐵𝐶

until 𝐶𝐸 = 𝐴𝐶 and 𝐶𝐷 = 𝐵𝐶. Then the△s 𝐴𝐵𝐶, 𝐶𝐷𝐸
are congruent, and ∴𝐷𝐸 = 𝐴𝐵.

Exercises.

1. To draw a straight line perpendicular to a given straight line from a given
point in it.

2. To draw a straight line perpendicular to a given straight line from a given
point without it.
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3. Any two sides of a triangle are together greater than the third side.
4. To trisect a right angle.
5. To construct a triangle, having given the base, an angle at the base, and

the sum of the sides.
6. The bisectors of the angles of a triangle are concurrent.
7. The perpendicular bisectors of the sides of a triangle are concurrent.
8. The medians of a triangle are concurrent, and the point of intersection

is one-third of any median from the corresponding side.
9. The straight line which joins the points of bisection of the sides of a

triangle is parallel to the base, and one-half of it.
10. If the adjacent sides of a quadrilateral are bisected and the points

joined, the figure so formed is a parallelogram.
11. Given two straight lines and a given point between them. To draw

through the given point a straight line which shall be bisected in that point.
12. Given two angles of a triangle and the perimeter; to construct the tri-

angle.
13. Through a given point, to draw a straight line that shall make equal

angles with two given straight lines.

Figures Consisting of Four Lines.

24. A parallelogram (▱) is a four-sided figure having its opposite sides
parallel.

25. A rhombus is an equilateral parallelogram.
26. A rectangle is a right-angled parallelogram.
27. A square is an equilateral rectangle.
28. A trapezium is a four-sided figure having two of its sides parallel.
29. A quadrilateral is any plane four-sided figure.
30. A line which joins any two non-adjacent corners of a polygon is called

a diagonal.
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PROPOSITION 8.

A parallelogram is bisected by its diagonal.

Let 𝐴𝐵𝐶𝐷 be any▱, and 𝐵𝐷 a diagonal.
Then in the△s 𝐴𝐵𝐷, 𝐵𝐶𝐷,

∵ ∠𝐴𝐵𝐷 = ∠𝐵𝐷𝐶 and ∠𝐴𝐷𝐵 = ∠𝐷𝐵𝐶 (Prop. 2), and
the side 𝐵𝐷 is common, △𝐴𝐵𝐷 = △𝐵𝐷𝐶. (Prop. 5,
Cor. 1.)

PROPOSITION 9.

Parallelograms on equal bases and between the same parallels are
equal in area.

Let 𝐴𝐵𝐶𝐷, 𝐴′𝐵′𝐶′𝐷′ be two▱s on equal bases 𝐴𝐵, 𝐴′𝐵′ and between the
same parallels 𝐷𝐶′, 𝐴𝐵′.

Then if the trapezium 𝐴𝐴′𝐷′𝐷 be moved paral-
lel to 𝐴𝐵′, until 𝐴′ coincides with 𝐵′, it will coincide
with the trapezium 𝐵𝐵′𝐶′𝐶, since 𝐴𝐵 = 𝐴′𝐵′.

Hence 𝐴𝐴′𝐷′𝐷 and 𝐵𝐵′𝐶′𝐶 are equal in area.
From each take away the trapezium 𝐶𝐷′𝐴′𝐵.
Then the remaining▱𝐴𝐵𝐶𝐷 = remaining▱𝐴′𝐵′𝐶′𝐷′.

Cor. 1.—Parallelograms on equal bases and of equal altitude are equal in
area.

Cor. 2.—Triangles on equal bases and of equal altitude are equal in area.
Cor. 3.—A triangle has half the area of a parallelogram on the same base.

(Prop. 8 and Cor. 2.)

Example.

To reduce a rectilinear figure to a triangle of equal area.
Let 012340 be any rectilinear figure.
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Join 14 and through 0
draw 00′ parallel to 14 to
meet the side 34 produced in
0′.

Then △014 = △0′14,
and the quadrilateral 0′1230′

is equal to the five-sided figure 012340. (Prop. 9, Cor. 2.)
Similarly, by joining 0′2 and drawing 11′ parallel 0′2 to meet 32 produced

in 1′, the quadrilateral is reduced to the equal△0′1′3.

PROPOSITION 10.

Parallelograms about the diagonal of any parallelogram are equal.

Let 𝐴𝐹, 𝐹𝐶 be▱s about the diagonal of any▱𝐴𝐵𝐶𝐷.
Then ∵ the△𝐴𝐵𝐷 =△𝐵𝐶𝐷 (Prop. 7, Cor. 1)
△𝐷𝐸𝐹 =△𝐷𝐾𝐹 (Prop. 7, Cor. 1)
and△𝐹𝐻𝐵 =△𝐹𝐺𝐵 (Prop. 7, Cor. 1)
∴△ 𝐴𝐵𝐷 −△𝐷𝐸𝐹 −△𝐹𝐻𝐵 =△𝐵𝐶𝐷 −△𝐷𝐾𝐹 −△𝐹𝐺𝐵
i.e. ▱𝐴𝐹 =▱𝐹𝐶.

Exercises.

1. When equal triangles stand on equal bases in one straight line and on
the same side of it, they are of equal altitude, or lie between the same parallels.

2. To draw a triangle, the altitude and the base angles being given.

31. Ratio.—The ratio of one quantity to another is the fraction which ex-
presses the numerical relation between their magnitudes. Thus 𝐴

𝐵
is the ratio

of 𝐴 to 𝐵.
32. Proportion.—When two ratios are equal, the quantities which consti-

tute the ratios are said to be in proportion.
Thus, if 𝐴

𝐵
= 𝐶

𝐷
, 𝐴, 𝐵, 𝐶, 𝐷 are in proportion.
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PROPOSITION 11.

Parallelograms of equal altitude are to one another as their bases.

Let𝐴𝐵𝐶𝐷, 𝐸𝐹𝐺𝐻 be any
two▱s of equal altitude.

If 𝐸𝐻′, 𝐹𝐺′ be drawn ∥
𝐴𝐷 or 𝐵𝐶
the▱𝐸𝐹𝐺′𝐻′ =▱𝐸𝐹𝐺𝐻. (Prop. 9.)

But the▱𝐴𝐵𝐶𝐷 may be divided into as many▱s equal to 𝐸𝐹𝐺′𝐻′ and
parts of it as the base 𝐴𝐵 contains the base 𝐸𝐹.

∴▱𝐴𝐵𝐶𝐷

▱𝐸𝐹𝐺𝐻
= 𝐴𝐵

𝐸𝐹
, i.e. the▱s are proportional to their bases.

Cor.—Triangles of equal altitude are to one another as their bases.

PROPOSITION 12.

The areas of equiangular parallelograms are as the products of their
sides.

Let 𝐴𝐵𝐶𝐷, 𝐴′𝐵′𝐶′𝐷′ be two
equiangular▱s.

Construct a▱𝑀𝑁𝑃𝑄 having the
same angles, and with one side
𝑀𝑁 = 𝐴𝐵, and the other𝑁𝑃 = 𝐵′𝐶′.

Then ▱𝐴𝐵𝐶𝐷
▱𝑀𝑁𝑃𝑄 = 𝐵𝐶

𝑁𝑃 (Prop. 11.)

and ▱𝐴′𝐵′𝐶′𝐷′

▱𝑀𝑁𝑃𝑄 = 𝐴′𝐵′
𝑀𝑁 (Prop. 11.)

∴ by division, ▱𝐴𝐵𝐶𝐷
▱𝐴′𝐵′𝐶′𝐷′ =

𝑀𝑁 ⋅ 𝐵𝐶
𝐴′𝐵′ ⋅𝑁𝑃 = 𝐴𝐵 ⋅ 𝐵𝐶

𝐴′𝐵′ ⋅ 𝐵′𝐶′

Cor.—The areas of triangles having an angle in each equal, are as the prod-
ucts of the sides about that angle.
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Example 1.

𝐴𝐵𝐶𝐷, 𝐴′𝐵′𝐶′𝐷′ are two equiangular▱s, the area of the first being three
times that of the second; if 𝐴𝐵 = 2′, 𝐵𝐶 = 3′, and 𝐴′𝐵′ = 1′, find 𝐵′𝐶′.

Answer 2′.

Example 2.

In the preceding, if 𝐴𝐵 = 4′, 𝐵𝐶 = 5′, 𝐴′𝐵′ = 3′ and 𝐵′𝐶′ = 4′, and the
area of 𝐴′𝐵′𝐶′𝐷′ be 9 square feet, find the area of 𝐴𝐵𝐶𝐷.

Answer 15 square feet.

Example 3.

Let it be required to find the length 𝐸𝐵
of the side of a level cutting 𝐸𝐵𝐶𝐹 having
the same area as another cutting 𝐴𝐵𝐶𝐷, the
ground surface of which is not level.

Produce 𝐴𝐵, 𝐷𝐶 to meet in 𝐺.

Then △𝐸𝐺𝐹
△𝐴𝐺𝐷

= 𝐸𝐺 ⋅ 𝐺𝐹
𝐴𝐺 ⋅ 𝐺𝐷

But△𝐸𝐺𝐹 =△𝐴𝐺𝐷 (by Hyp.)

∴ 𝐸𝐺 ⋅ 𝐺𝐹
𝐴𝐺 ⋅ 𝐺𝐷 = 1 and ∴ 𝐸𝐺 ⋅ 𝐺𝐹 = 𝐴𝐺 ⋅ 𝐺𝐷.

But when the side-slopes are equal, as is generally the case, 𝐸𝐺 = 𝐺𝐹
and ∴ 𝐸𝐺 =

√
𝐴𝐺 ⋅ 𝐺𝐷 and ∴ 𝐸𝐵 =

√
𝐴𝐺 ⋅ 𝐺𝐷 − 𝐵𝐺.

Similar Figures.

33. Similar figures are equiangular, and have their corresponding sides
proportional.
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PROPOSITION 13.

Equiangular triangles are also similar.

Let 𝐴𝐵𝐶, 𝐴′𝐵′𝐶′ be equiangular
△s, having the ∠𝐴 = ∠𝐴′.

Apply the △𝐴′𝐵′𝐶′ to the
△𝐴𝐵𝐶, so that 𝐴′ falls on 𝐴, and
𝐴′𝐵′ on 𝐴𝐵; then will 𝐴′𝐶′ fall on
𝐴𝐶, because ∠𝐴′ = ∠𝐴

and ∵ ∠𝐴′𝐵′𝐶′ = ∠𝐴𝐵𝐶 (by Hyp.)
𝐵′𝐶′ is parallel to 𝐵𝐶. (Prop. 2.)
Join 𝐵′𝐶, 𝐵𝐶′.

Then △𝐴𝐵𝐶′

△𝐴𝐵′𝐶
= 𝐴𝐵 ⋅ 𝐴𝐶′

𝐴𝐶 ⋅ 𝐴𝐵′ (Prop. 12, Cor.)

But △ 𝐴𝐵𝐶′ =△𝐴𝐵′𝐶′ +△𝐵𝐵′𝐶′

and △ 𝐴𝐵′𝐶 =△𝐴𝐵′𝐶′ +△𝐵′𝐶′𝐶

But △ 𝐵𝐵′𝐶′ =△𝐵′𝐶′𝐶. (Prop. 9, Cor. 2.)

∴ △ 𝐴𝐵𝐶′ =△𝐴𝐵′𝐶

Consequently 𝐴𝐵 ⋅ 𝐴𝐶
′

𝐴𝐶 ⋅ 𝐴𝐵′ = 1

i.e. 𝐴𝐵𝐴𝐶 = 𝐴𝐵′

𝐴𝐶′ =
𝐴′𝐵′

𝐴′𝐶′

Similarly 𝐵𝐶𝐵𝐴 = 𝐵′𝐶′

𝐵′𝐴′

and 𝐶𝐴
𝐶𝐵 = 𝐶′𝐴′

𝐶′𝐵′

Example.

Diagonal Scale.
The diagonal scale enables us to subdivide a small

distance very accurately. Thus, if 𝐴𝐵 be a line, which it
is required to divide into 40 equal parts, say. Divide 𝐴𝐵
into 10 equal parts, and set up a perpendicular𝐴𝐶 of any



27

convenient length, and divide it into four parts; then if horizontal and vertical
lines be drawn, and also diagonals 𝐶1, 22′, 33′, &c., each of these divisions will
be subdivided into four equal parts (by Prop. 13), and the whole line therefore
into 40 equal parts.

Example 1.

Draw a diagonal scale 6 inches long, to read 1/100ths of an inch.

Example 2.

A mechanical drawing is made in terms of a unit whose length is 1.25
inches. Draw a diagonal scale to give tenths and hundredths of the unit.

Example 3.

Draw a diagonal scale of 60 chains to an inch, to read chains.

Conditions which Determine the Similarity of Triangles.

It follows from the preceding propositions that two triangles are similar
when—

1. One angle in the one is equal to one angle in the other, and the ratio of
the sides about these angles are equal;

2. One angle in the one is equal to one angle in the other, and the ratio of
any two sides in each are equal, provided that the triangle is determined by the
three parts considered;

3. Any two side-ratios in each are equal;
4. Any two angles in each are equal.

PROPOSITION 14.

In any right-angled triangle, the perpendicular on the hypothenuse
from the opposite vertex makes triangles which are similar to the
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whole triangle and to one another.

Let 𝐴𝐵𝐶 be any rt.- ∠d△, having a rt. ∠ at 𝐴,
and let 𝐴𝐴′ = ℎ be the perpendicular on the hy-
pothenuse 𝐵𝐶.

Then, in the△s 𝐴𝐵𝐶, 𝐴𝐵𝐴′, the ∠s 𝐵𝐴𝐶, 𝐵𝐴′𝐴
are rt. ∠s, and the ∠𝐵 is common, ∴ the△s are similar.

In the same way the△s 𝐴𝐵𝐶, 𝐴𝐶𝐴′ are similar.
∴ the three△s 𝐴𝐵𝐶, 𝐴𝐵𝐴′, 𝐴𝐶𝐴′ are similar.
Cor. 1.—Since the△s 𝐴𝐵𝐴′, 𝐴𝐶𝐴′ are similar

𝑐′

ℎ′
= ℎ
𝑏′

(Prop. 13) ∴ ℎ2 = 𝑏′𝑐′

i.e. the square on the perpendicular is equal to the rectangle contained by
the segments into which it divides the hypothenuse.

Cor. 2.—Since the△s 𝐴𝐵𝐴′, 𝐴𝐵𝐶 are similar

𝑐
𝑎 = 𝑐′

𝑐 (Prop. 13) ∴ 𝑐2 = 𝑎𝑐′

Similarly since the△s 𝐴𝐶𝐴′, 𝐴𝐵𝐶 are similar

𝑏
𝑎 = 𝑏′

𝑏
(Prop. 13) ∴ 𝑏2 = 𝑎𝑏′

i.e. the square on one side of a rt. ∠d△ is equal to the rectangle contained
by the hypothenuse and the projection of that side on the hypothenuse.

Cor. 3.—Hence

𝑏2 + 𝑐2 = 𝑎𝑏′ + 𝑎𝑐′ (Cor. 2.)

= 𝑎(𝑏′ + 𝑐′) = 𝑎 × 𝑎 = 𝑎2

Important.—I.e. In any rt.- ∠d△, the squares on the sides about the rt.
∠ are together equal to the square on the hypothenuse.

Example.
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To measure the width of a river, &c., indirectly.
Measure a distance 𝐴𝐵, and make 𝐵𝐷 = 2𝐴𝐵, say;

𝐵𝐷 being at rt. ∠s to 𝐴𝐵. Sight 𝐶 in line with 𝐴𝐵, and
make 𝐴𝐷𝐶 a rt. ∠. Then 𝐵𝐷2 = 𝐴𝐵 ⋅ 𝐵𝐶

∴ 𝐵𝐶 = 𝐵𝐷2

𝐴𝐵 = 4𝐴𝐵2

𝐴𝐵 = 4𝐴𝐵.

PROPOSITION 15.

In any triangle the square on one side is less than the sum of the
squares on the other two sides, by twice the area of the rectangle con-
tained by either of these and the projection on it of the other.

Let 𝐴𝐵𝐶 be any△, and let 𝐴𝐷 be perp. to 𝐵𝐶,
then 𝐵𝐷 is the projection of 𝐴𝐵 on 𝐵𝐶.

Now 𝑏2 = ℎ2 + (𝑎 − 𝑑)2. (Prop. 14, Cor. 3).

= ℎ2 + 𝑎2 − 2𝑎𝑑 + 𝑑2. (By Algebra.)

but ℎ2 + 𝑑2 = 𝑐2. (Prop. 14, Cor. 3.)

∴ 𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑑.

If the angle 𝐵 be obtuse, then the projection 𝑑will be on the side produced,
and, being drawn in the opposite direction to what it was before, must be re-
garded as a negative quantity, so that the last term will then be added instead
of subtracted. With this convention, Prop. 15 holds for any triangle.

PROPOSITION 16.

The areas of similar triangles are in the ratio of the squares of their
corresponding sides.

Let 𝐴𝐵𝐶, 𝐴′𝐵′𝐶′ be any similar△s.
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Then △𝐴𝐵𝐶
△𝐴′𝐵′𝐶′

= 𝐴𝐵 ⋅ 𝐴𝐶
𝐴′𝐵′ ⋅ 𝐴′𝐶′ (Prop. 12, Cor.)

But 𝐴𝐶
𝐴′𝐶′ =

𝐴𝐵
𝐴′𝐵′ (Prop. 13.)

∴ △𝐴𝐵𝐶
△𝐴′𝐵′𝐶′

= 𝐴𝐵 ⋅ 𝐴𝐵
𝐴′𝐵 ⋅ 𝐴′𝐵′ = ( 𝐴𝐵𝐴′𝐵′)

2

= ( 𝐴𝐶𝐴′𝐶′)
2

= ( 𝐶𝐵𝐶′𝐵′)
2

PROPOSITION 17.

The areas of similar polygons are in the ratio
of the squares of their corresponding sides.

Let 𝐴𝐵𝐶𝐷𝐸, 𝐴′𝐵′𝐶′𝐷′𝐸′ be similar polygons,
which are made up of the similar△s 𝐴𝐵𝐸, 𝐴′𝐵′𝐸′,
&c.

Then since △𝐴𝐵𝐸
△𝐴′𝐵′𝐸′

= 𝐴𝐵2

𝐴′𝐵′2

and △𝐵𝐶𝐸
△𝐵′𝐶′𝐸′

= 𝐵𝐶2

𝐵′𝐶′2 &𝑐. (Prop. 16)

and since 𝐴𝐵
𝐴′𝐵′ =

𝐵𝐶
𝐵′𝐶′ = &c. (Prop. 13.)

∴ △𝐴𝐵𝐸
△𝐴′𝐵′𝐸′

= △𝐵𝐶𝐸
△𝐵′𝐶′𝐸′

= &c. = ( 𝐴𝐵𝐴′𝐵′)
2

∴ △𝐴𝐵𝐸 +△𝐵𝐶𝐸 + &c.
△𝐴′𝐵′𝐸′ +△𝐵′𝐶′𝐸′ + &c.

= ( 𝐴𝐵𝐴′𝐵′)
2

(by Algebra).

∴ 𝐴𝐵𝐶𝐷𝐸
𝐴′𝐵′𝐶′𝐷′𝐸′ = ( 𝐴𝐵𝐴′𝐵′)

2

= ( 𝐵𝐶𝐵′𝐶′)
2

= &c.

and similarly for any other polygons.

Cor.—The areas of similar figures are in the ratio of the squares of their
corresponding linear dimensions.
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PROPOSITION 18.

The area of any figure described on the hypothenuse of a right-
angled triangle is equal to the similar and similarly described figures
on the sides about the right angle.

Let ABC be any rt.- ∠d△. Then if𝑀1 and𝑀2 be the
areas of the figures on 𝑏 and 𝑐, the sides about the rt. ∠𝐴,
and𝑀 the area of the similar figure on 𝑎, then

𝑀1

𝑀 = 𝑏2

𝑎2
and

𝑀2

𝑀 = 𝑐2

𝑎2
(Prop. 17).

Hence, by addition,

𝑀1 +𝑀2

𝑀 = 𝑏2 + 𝑐2

𝑎2
= 𝑎2

𝑎2
= 1 (Prop. 14, Cor. 3).

∴ 𝑀1 +𝑀2 = 𝑀

Practical Example.

To substitute for a hollow round column a solid one of equal area.
Let𝑂𝐴 be the internal radius, and𝑂𝐵 the

external radius of the hollow column. Draw
𝐵𝐴 tangent to the inner circle.

Then a circle described with𝐴𝐵 as radius
will have the same area as the difference be-
tween the other two.

Proof.—For since 𝑂𝐴𝐵 is a rt.- ∠△, by
Prop. 18, the circles described with the sides 𝑂𝐴, 𝐴𝐵, as radii, will be equal in
area to the circle described with the hypothenuse 𝑂𝐵 as radius.
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PROPOSITION 19.

If any two similar figures are placedwith their corresponding sides
parallel, the lines joining corresponding points in the two figures are
concurrent.

Let𝐴𝐵𝐶𝐷,𝐴′𝐵′𝐶′𝐷′ be two such
figures, and let 𝐴𝐴′ meet 𝐵𝐵′ in 𝑆.

Then, ∵ 𝐴𝐵 is par. to 𝐴′𝐵′ (by
Hyp.), the △s 𝑆𝐴𝐵, 𝑆𝐴′𝐵′ are sim-
ilar,

and ∴ 𝑆𝐵

𝑆𝐵′
= 𝐴𝐵

𝐴′𝐵′
(Prop. 13.)

Again, if possible, let 𝐶𝐶′ meet
𝐵𝐵′ in the point 𝑆′ not coincident with 𝑆.

Then ∵ 𝐵𝐶 is ∥ to 𝐵′𝐶′ (by Hyp.), the△s 𝑆′𝐵𝐶, 𝑆′𝐵′𝐶′ are similar,

and ∴ 𝑆′𝐵
𝑆′𝐵′ =

𝐵𝐶
𝐵′𝐶′ (Prop. 13.)

But since 𝐴𝐵𝐶, 𝐴′𝐵′𝐶′are similar △ s (Hyp.)
𝐴𝐵
𝐵𝐶 = 𝐴′𝐵′

𝐵′𝐶′ (Prop. 13.)

and ∴ 𝐴𝐵
𝐴′𝐵′ =

𝐵𝐶
𝐵′𝐶′ (By Algebra.)

∴ 𝑆𝐵
𝑆𝐵′ =

𝑆′𝐵
𝑆′𝐵′

Hence, 𝑆𝐵 − 𝑆𝐵′

𝑆𝐵′ = 𝑆′𝐵 − 𝑆′𝐵′

𝑆′𝐵′ i.e., 𝐵𝐵′

𝑆𝐵′ =
𝐵𝐵′

𝑆′𝐵′

∴ 𝑆𝐵′ = 𝑆′𝐵′, and ∴ 𝑆 and 𝑆′ must be coincident.
In the same way it may be shown that 𝐷𝐷′ must pass through 𝑆.

Practical Example.

To draw a line through a given point to pass through the inaccessible join
of two given lines.
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Let 𝐴𝐵𝐶𝐷 be a drawing-board, and let
𝐸𝐹 and 𝐺𝐻 be two lines upon it which in-
tersect beyond the limits of the board.

It is required to draw through a given
point 𝑃 a straight line which shall pass
through the intersection of the given lines

produced. Draw any△𝑃𝐹𝐻, and draw 𝐸𝐾 ∥ to 𝐹𝐻. Through 𝐸 and 𝐾 draw
lines 𝐸𝐿, 𝐾𝐿 par. to 𝐹𝑃, 𝑃𝐻 intersecting in 𝐿. Then 𝐿𝑃 produced will pass
through the intersection of the given lines, as required (by Prop. 19).

Exercise.—Draw a line to pass through the inaccessible points which are
given by two pairs of lines.

The Circle.

34. A circle is a figure contained by the path of a point which rotates about
a fixed point or centre, at a constant distance from it, called the radius. The
path of the point is the circumference of the circle, and any line through the
centre is called a diameter.

35. A chord of a circle is the straight line joining any two points on its
circumference.

36. A tangent is a line which touches a circle.
37. A secant is a line which cuts a circle.
38. A sector of a circle is the figure contained by an arc and the radii at its

extremities.
39. A segment of a circle is the figure contained by a chord and an arc of

the circle.
40. Concentric circles are circles having a common centre.
41. An arc of a circle is part of its circumference.
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PROPOSITION 20.

The straight line drawn from the centre of a circle to the middle
point of a chord is perpendicular to the chord.

Let 𝐴𝐵 be any chord bisected in 𝐶. Join 𝑂𝐴, 𝑂𝐵.
Then in the△s 𝑂𝐴𝐶, 𝑂𝐵𝐶, since the three sides in

each are respectively equal, the ∠𝑂𝐶𝐴 = ∠𝑂𝐶𝐵 (Prop.
7, Cor. 1), and therefore each of them is a right angle.

∴ 𝑂𝐶 is perpendicular to 𝐴𝐵.

Cor. 1.—Conversely, the straight line drawn from the point of bisection of
a chord perpendicular to it, passes through the centre.

Cor. 2.—The line from the centre of a circle perpendicular to a chord,
bisects the chord.

Cor. 3.—If the points𝐴 and 𝐵 approach each other indefinitely, the chord
becomes a tangent, and the line 𝑂𝐶, which bisects 𝐴𝐵, becomes the radius at
the point of contact, and therefore a radius and the tangent at its extremity are
at right angles.

PROPOSITION 21.

The angle at the centre of a circle is double the angle at the circum-
ference standing on the same arc.

There are three cases to be considered, as in (i.), (ii.), (iii.), where the∠𝐴𝑃𝐵
is the ∠ at the circumference, and 𝐴𝐶𝐵 the ∠ at the centre standing on the
same arc 𝐴𝐵.
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Then, in each case, ∠𝐴𝐶𝐷 = ∠𝐶𝐴𝑃 + ∠𝐶𝑃𝐴 = 2∠𝐶𝑃𝐴 (Prop. 3 and
Prop. 7, Cor. 1),

and ∠𝐵𝐶𝐷 = ∠𝐶𝐵𝑃 + ∠𝐶𝑃𝐵 = 2∠𝐶𝑃𝐵 (Prop. 3 and Prop. 7, Cor. 1).
∴ in Case (i.) and Case (iii.) by Addition ∠𝐴𝐶𝐵 = 2∠𝐴𝑃𝐵,
and in Case (ii.) by Subtraction ∠𝐴𝐵𝐶 = 2∠𝐴𝑃𝐵.

Cor. 1.—All angles at the circumference standing on the same arc are
equal.

Cor. 2.—When the angle at the centre is equal to two right angles, the an-
gle at the circumference is one right angle, that is to say, the angle in a semicircle
is a right angle.

Example 1.

To determine the position of a
ship at sea by observations on three
known points ashore. (Three-point
Problem.) Let 𝐴, 𝐵, 𝐶 be the known
points on shore, 𝐷𝐸 being the shore-
line, and let 𝑆 be the ship. The angles
𝐴𝑆𝐵, 𝐵𝑆𝐶 are observed. If a○ be de-
scribed on𝐴𝐵 containing the angle equal to the observed angle𝐴𝑆𝐵, the point
𝑆 must lie upon it (Cor. 1). Similarly, if a○ be described on 𝐵𝐶 containing an
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angle equal to the observed angle 𝐵𝑆𝐶, 𝑆must lie upon it also. Consequently 𝑆
must lie at their point of intersection. In order to construct these circles, dou-
ble the observed angle to find the angle at the centre (Prop. 21), subtract this
from two right angles, and halve the remainder. The result will be the angles
at the base of the△𝑠𝐴𝐵1, 𝐵𝐶2.

Example 2.

To draw a perpendicular at 𝐵 to a given line 𝐴𝐵 at its extremity without
producing it.

Let AB be the given line. Take a convenient point 𝑂,
and with 𝑂𝐵 as radius describe a circle cutting 𝐴𝐵 in 𝐶.
Join 𝐶𝑂, producing it to cut the circle in 𝐷. Then 𝐵𝐷 is
the perpendicular required, for the angle𝐶𝐵𝐷, being the
angle in a semi-○, is a right angle. (Cor. 2.)

PROPOSITION 22.

The opposite angles of a quadrilateral inscribed in a circle are to-
gether equal to two right angles.

Let 𝐴𝑃𝐵𝑄 be a quadrilateral in a circle.
Then, since ∠𝐴𝑃𝐵 = 1

2
concave angle 𝐴𝐶𝐷.

(Prop. 21),
and ∠𝐴𝑄𝐵 = 1

2
convex angle 𝐴𝐶𝐵 (Prop. 21),

∴ ∠𝐴𝑃𝐵 + ∠𝐴𝑄𝐵 = 1

2
(sum of the convex and

concave angles)
= 1

2
(four rt. ∠s)

= 2 rt.∠s.
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PROPOSITION 23.

In any circle the product of the segments made by the intersection
of two chords with the circumference are equal.

Let 𝐴𝐵, 𝐶𝐷 be any two
chords which intersect either
within or without the circle
at 𝐸.

Join 𝐴𝐶, 𝐵𝐷. Then
∠𝐴𝐸𝐶 = ∠𝐵𝐸𝐷,

and ∠𝐴𝐶𝐸 = ∠𝐷𝐵𝐸. (Prop. 21, Cor. 1.)
Therefore the△s 𝐴𝐶𝐸, 𝐵𝐷𝐸 are equiangular (Prop. 4),

and ∴ 𝐴𝐸
𝐶𝐸 = 𝐷𝐸

𝐵𝐸 (Prop. 13).

or 𝐴𝐸 ⋅ 𝐵𝐸 = 𝐶𝐸 ⋅ 𝐷𝐸.

Cor. 1.—Conversely, when the products of the segments are equal, the
points 𝐴, 𝐵, 𝐶, 𝐷 lie on a circle.

Cor. 2.—In any circle the square on the tangent is equal to the product of
the segments cut off on the secant.

Cor. 3.—Tangents to a circle from the same point are equal.

Example.

To find the distance of the horizon at sea.
Let the observer be at𝐻 at an elevation𝐴𝐻 above the

sea-level.
Then, if 𝐻𝑇 be a tangent to the surface of the water,

𝐻𝑇2 = 𝐻𝐵 ⋅𝐻𝐴 (Prop. 23, Cor. 2).
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∴ the distance of the horizon 𝐻𝑇

=
√
𝐻𝐵 ⋅𝐻𝐴

=
√
(𝑑 + ℎ)ℎ ,

if 𝑑 is the Earth’s diameter, and ℎ is the elevation of the observer above
sea-level.

Since 𝐻𝑇2 = (𝑑 + ℎ)ℎ , where 𝑑 is about 8000 miles, and ℎ is usually
measured in feet,

we have 𝐻𝑇2 = (8000 + ℎ
5280)

ℎ
5280 in miles.

= 8000ℎ
5280 , since ℎ2

52802
, being very small,

may be neglected without sensible error.

∴ 𝐻𝑇2 = 100
66 ℎ =

3
2ℎ approximately.

Hence the rule:
Three times the height of the observer above the sea level in feet is equal

to twice the square of the distance seen in miles.

PROPOSITION 24.

If a straight line touch a circle, and from the point of contact an-
other straight line be drawn cutting the circle, the angles which this
straight line makes with the first at the point of contact are equal to
the angles in the adjacent segments.

If 𝐸𝐹 be a tangent, and 𝐵𝐷 a secant at the point
𝐵, Then ∠𝐷𝐵𝐹 = ∠𝐵𝐴𝐷, and ∠𝐷𝐵𝐸 = ∠𝐵𝐶𝐷.

Proof.—Draw 𝐵𝐴 perpr. to 𝐸𝐹 at the point 𝐵,
Then ∠𝐴𝐷𝐵 is a rt. ∠. (Prop. 21, Cor. 2.)
and ∴∠s 𝐴𝐵𝐶, 𝐵𝐴𝐷 = a rt. ∠ (Prop. 4.)
∴ ∠𝐴𝐵𝐹 = ∠𝐴𝐵𝐷 + ∠𝐵𝐴𝐷.

Take away the common ∠𝐴𝐵𝐷.
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Then the remaining angle 𝐷𝐵𝐹 = the remaining angle 𝐵𝐴𝐷,
i.e., the ∠𝐷𝐵𝐹 is equal to the angle in the adjacent segment 𝐵𝐴𝐷.

Again, ∵ the ∠s 𝐵𝐴𝐷, 𝐵𝐶𝐷 = 2 rt. ∠s (Prop. 22)

and the ∠s 𝐷𝐵𝐹,𝐷𝐵𝐸 = 2 rt. ∠s

∴ ∠s 𝐵𝐴𝐷, 𝐵𝐶𝐷 = ∠s 𝐷𝐵𝐹,𝐷𝐵𝐸.

But ∠𝐵𝐴𝐷 = ∠𝐷𝐵𝐹 (By the preceding part),

∴ ∠𝐵𝐶𝐷 = ∠𝐷𝐵𝐸.

Exercises on the Circle.

1. To draw a triangle, having given the base, the vertical angle, and the
altitude.

2. To draw a rt.- ∠d△ when the hypotenuse and one side are given.
3. To draw a tangent to a circle from a given point without it.
4. To inscribe an equilateral△ and a regular hexagon in a circle.
5. To inscribe a square and a regular octagon in a circle.
6. To find a mean proportional between two given straight lines.
7. Divide a circle into two segments, so that the angle contained in the one

may be three times the angle contained in the other.
8. If a quadrilateral figure be described about a circle, the sums of the op-

posite sides will be equal to one another.
9. 𝐷𝐹 is a tangent to a circle, and terminated at 𝐷 and 𝐹 by two tangents

drawn at the extremities of a diameter𝐴𝐵; show that the segment𝐷𝐹 subtends
a rt. ∠ at the centre of the circle.

10. If a circle be inscribed, in a rt.- ∠d△, the excess of the two sides over
the hypotenuse is equal to the diameter of the circle.

11. Two circles touch one another in 𝐴, and have a common tangent 𝐵𝐶.
Show that the angle 𝐵𝐴𝐶 is a rt. ∠.
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PROPOSITION 25.

To find the ratio of the circumference of a circle to its diameter.

If two similar polygons be drawn, one inscribed
in a circle, and the other circumscribed about it, it is
evident that the circumference of the circle is greater
than the first and less than the second. The following
table gives the lengths of the perimeters of regular
polygons inscribed said circumscribed to a circle.

Perimeter of
Number of Perimeter of Circumscribed

Sides. Inscribed Polygon. Polygon.
𝑑 × 𝑑 ×

6 3.00000 3.46410
12 3.10583 3.21539
24 3.13263 3.15966
48 3.13935 3.14609
96 3.14103 3.14271
192 3.14145 3.14187
384 3.14156 3.14166
768 3.14158 3.14161
1536 3.14159 3.14160
3072 3.14159 3.14159

It is evident, therefore, that the circumference of a circle is equal to 3.14159
times the diameter to five places of decimals. The exact value is an incommen-
surable number, that is to say, it cannot be expressed exactly in figures. The
Greek letter 𝜋 (pi) is for convenience used to denote the true value, and the
circumference of a circle is therefore 𝜋 times its diameter. For all ordinary
work 3.1416 is sufficiently accurate, and the vulgar fraction 355

113
also expresses

the value of 𝜋 correctly to six decimal places. For rough calculations 22

7
is fre-

quently used, which is nearly correct to three decimal places.
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PROPOSITION 26.

To find the length of a circular arc.

To find the length of an arc of a circle of given radius r, subtending a given
angle of n degrees.

Since the arcs of a circle are in proportion to the an-
gles which they subtend,

𝑎𝑟𝑐𝐴𝐵
𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= ∠𝐴𝑂𝐵
4 rt. ∠s

whence arc 𝐴𝐵 = 2𝜋𝑟 × 𝑛°
360°

= 𝜋𝑟𝑛°
180°

Measurement of angles in radianmeasure.—Inmathematical work it
is frequently convenient and necessary tomeasure angles without reference to
any arbitrary unit, such as a degree or grade, by the ratio of the arc subtending
it to the radius, on any circle.

Thus, the angle 𝐴𝑂𝐵 is evidently determined if the
ratio of the arc 𝐴𝐵 to the radius 𝑂𝐵 is known.

If, then, angles are measured by the ratio arc/radius,
the unit angle will be that for which the ratio arc/radius
= 1, or for which arc = radius.

This angle is called a radian. If arc 𝐵𝐶 = radius, then ∠𝐶𝑂𝐵 is a radian,
and the length of any arc 𝐴𝐵 = radius × number of radians in ∠𝐴𝑂𝐵.

For an angle of 180°, arc
radius

= 𝜋𝑟
𝑟 = 𝜋 units,

i.e., 𝜋 radians = 2 rt. ∠s.

Hence 1 radian = 180°
𝜋 = 180°

3.14159 = 57°2958 nearly.
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Exercises.

1. Turn into radians 60°, 90°, 300°, 52°30′, 135°4′57′′.

Answer: 𝜋

3
, 𝜋
2
, 5𝜋
3
, 7𝜋
24
, .75046 𝜋.

2. Turn into degrees 𝜋

3
, 𝜋
2
, 2
3
, 7

15
radians.

Answer: 60°, 25 5°
7
, 120°

𝜋
, 84°

𝜋
.

3. An arc of a circle whose radius is 6′′, subtends an angle of 2 radians; how
many degrees will be subtended by the same arc in a circle of 4′′ radius?

Answer: 540

𝜋
degrees.

Graphical determination of the length of
a circular arc.

Let𝐴𝐵 be the circular arc whose length is
required. Join 𝐴𝐵, and produce it backward,
making 𝐵𝐶 = 1

2
𝐴𝐵. With 𝐶 as centre, and

radius 𝐶𝐴, describe an arc of a circle cutting
the tangent at 𝐵 in the point 𝐷. Then 𝐵𝐷 is

approximately equal to the arc 𝐴𝐵.
If ∠𝐴𝑂𝐵 exceed 45°, it is best to treat the arc in two parts.

Numerical Value of Areas.

PROPOSITION 27.

To find the area of a rectangle.

The unit of area is a square, whose sides are equal to
the unit of length. Thus, if 1 inch is the linear unit, 1 sq.
inch is the unit of area.

Let 𝐴𝐵𝐶𝐷 be a rectangle, and let there be 𝑙units in
the length 𝐴𝐵, and 𝑏 units in the breadth 𝐴𝐷. Then, if 𝐴𝐵 be divided into 𝑙
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equal parts, and lines be drawn through the points parallel to 𝐴𝐷, the whole
rectangle is divided into 𝑙 new rectangles of unit width.

If now𝐴𝐷 be divided into 𝑏 equal parts, and lines be drawn parallel to𝐴𝐷,
each of the former rectangles is divided into 𝑏 new rectangles, whose sides are
of unit length. Therefore, the whole number of units of area is 𝑏 × 𝑙, the
product of the linear dimensions of the length and breadth.

PROPOSITION 28.

To find the area of a parallelogram.

Let𝐴𝐵𝐶𝐷 be a▱. Then (by Prop. 9), the area of the
▱ is equal to the area of a rectangle,𝐴′𝐵𝐶𝐷′, having the
same base and altitude.

∴ the area of▱ = base × the altitude.

PROPOSITION 29.

To find the area of a triangle.

Let 𝐴𝐵𝐶 be a triangle.
Draw 𝐶𝐷 parallel to 𝐴𝐵 and 𝐴𝐷 parallel to M.
Then 𝐴𝐵𝐶𝐷 is a parallelogram.
∴ area = base × altitute.
But△𝐴𝐵𝐶 = 1

2
▱𝐴𝐵𝐶𝐷 (by Prop. 8).

∴ area of a△ = 1

2
base × the altitude.

PROPOSITION 30.

To find the area of a trapezium.

Let 𝐴𝐵𝐶𝐷 be a trapezium. Join 𝐴𝐶.
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Then area of△𝐴𝐷𝐶 = 1

2
𝐷𝐶 × ℎ,

and area of△𝐴𝐵𝐶 = 1

2
𝐴𝐵 × ℎ.

∴ the area of the trapezium = 1
2 𝐷𝐶 × ℎ + 1

2 𝐴𝐵 × ℎ

= 1
2 ℎ(𝐴𝐵 + 𝐷𝐶).

I.e., the area of a trapezium = the altitude ×
1

2
the sum of the parallel sides.

PROPOSITION 31.

To find the area of a quadrilateral.

Let 𝐴𝐵𝐶𝐷 be a quadrilateral. Join 𝐴𝐶.
Then area of△𝐴𝐵𝐶 = 1

2
𝐴𝐶 × ℎ1,

and area of△𝐴𝐶𝐷 = 1

2
𝐴𝐶 × ℎ2,

∴ area of the quadrilateral
= 1

2
𝐴𝐶 × ℎ1 +

1

2
𝐴𝐶 × ℎ2

= 1

2
𝐴𝐶(ℎ1 + ℎ2)

I.e., the area of a quadrilateral = 1

2
product of a diagonal into the sum of

the perpendiculars on the diagonal from the opposite vertices.

PROPOSITION 32.

To find the area of a polygon.

Let 𝐴𝐵𝐶𝐷𝐸 be any polygon.
Draw any line 𝑂𝐺, and drop perps. upon it from the

angles of the polygon, viz., 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5; and let 𝑎1, 𝑎2,
𝑎3, 𝑎4, 𝑎5, be the distances of these perpendiculars from
any point 𝑂 in the line 𝑂𝐺.
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Then the area of the polygon

𝐴𝐵𝐶𝐷𝐸 = trap. 𝐴𝐴1𝐵1𝐵 + trap. 𝐵𝐵1𝐶1𝐶

− trapms 𝐴𝐴1𝐸1𝐸,𝐸𝐸1𝐷1𝐷,𝐷𝐷1𝐶1𝐶

= 1
2 (𝑝1 + 𝑝2)(𝑎2 − 𝑎1) +

1
2 (𝑝2 + 𝑝3)(𝑎3 − 𝑎2)

− 1
2 (𝑝1 + 𝑝5)(𝑎5 − 𝑎1) −

1
2 (𝑝5 + 𝑝4)(𝑎4 − 𝑎5)

− 1
2 (𝑝4 + 𝑝3)(𝑎3 − 𝑎4) ,

which reduces to
1
2 {𝑝1𝑎2 − 𝑝2𝑎1 + 𝑝2𝑎3 − 𝑝3𝑎2 + 𝑝3𝑎4

− 𝑝4𝑎3 + 𝑝4𝑎5 − 𝑝5𝑎4 + 𝑝5𝑎1 − 𝑝1𝑎5}

an expression which can be easily written down, on account of its symme-
try.

This method is convenient in taking out areas in surveys, &c.

PROPOSITION 33.

To find the area of a circle and its sector.

Let 𝐴𝑂𝐵 be a sector of a circle.
Then if 𝐴𝑂𝐵 be supposed divided into 𝑛 smaller

equal sectors, such as 𝑂𝐷𝐸, and 𝐷𝐸 be joined, the area
of the △𝑂𝐷𝐸 approximates more nearly to the area of
the sector 𝑂𝐷𝐸, as the number of△s is increased, and
when, therefore, the number is indefinitely great, the error is indefinitely
small.

But the area of each△ = 1
2 base × the altitude,

∴ the total area = 1
2 (sum of the bases) × the altitude

= 1
2 arc 𝐴𝐵 × the radius,
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when the number of△s is infinitely great.

∴ the area of a sector = 1
2 length of its arc × the radius.

In the case of a complete circle, the arc = the circumference = 2𝜋𝑟,
and ∴ the area of a circle = 1

2
× 2𝜋𝑟 × 𝑟 = 𝜋𝑟2

= 𝜋𝑑2
4 = 0.7854𝑑2

To find graphically the area of a circular
sector.

Let 𝑂𝐴𝐵 be a sector. Draw 𝐵𝐶 equal in
length to the arc 𝐴𝐵. (Prop. 26.)

Join 𝑂𝐶. Then△𝑂𝐵𝐶 = sector 𝑂𝐴𝐵.
Proof.—For area of the sector = 1

2
arc ×

the radius, and the area of the △ =
1

2
𝑂𝐵 × 𝐵𝐶, but 𝑂𝐵 = radius, and 𝐵𝐶 =

the length of the arc.
∴ area of the △ 𝑂𝐵𝐶 = 1

2
𝑎𝑟𝑐 × the radius,

and ∴ area of the sector 𝑂𝐴𝐵 = area of △ 𝑂𝐵𝐶.

PROPOSITION 34.

To find the area of a circular segment.

Let 𝐴𝐷𝐵 be the circular segment.
Then

area = area of the sector 𝑂𝐴𝐷𝐵 −△𝑂𝐴𝐵

= 1
2 𝑎𝑟𝑐 × 𝑟 − 1

2 𝐴𝐵 × 𝑂𝐹.

Graphically.—By Prop. 33 construct a△𝑂𝐵𝐶 =
sector 𝑂𝐴𝐷𝐵.

Draw 𝐴𝐸 parallel to 𝑂𝐵, and join 𝑂𝐸.
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Then△𝑂𝐸𝐵 =△𝑂𝐴𝐵 (Prop. 9, Cor. 2),

∴ the area of the segment =△𝑂𝐵𝐶 −△𝑂𝐸𝐵

=△𝑂𝐸𝐶.

PROPOSITION 35.

To find areas by a sum-curve.

Let 𝑂𝐴𝐵𝐶 be an area bounded by the axes 𝑂𝑋, 𝑂𝑌.
Divide the base into a number of parts (preferably equal), viz., 1, 2, 3, &c.,

and draw the vertical ordinates 11′, 22′, &c. Also draw the mid-ordinates 𝑎𝑎′,
𝑏𝑏′, 𝑐𝑐′, &c., and project them on the axis 𝑂𝑌 at the points 𝑎′′, 𝑏′′, 𝑐′′, &c.

Take any pole 𝑄 in 𝑂𝐶 produced, and join 𝑄𝑎′′, 𝑄𝑏′′, 𝑄𝑐′′, &c.
Beginning at 𝑂, draw 𝑂1′′ ∥ 𝑄′′, 1′′2′′ ∥ 𝑄𝑏′′, and so on.

Then the area under the curve 𝑂𝐴𝐵𝐶 up to any point is given approximately
by the product of the ordinate of the curve 𝑂1′′2′′, &c., up to that point into
the polar distance 𝑂𝑄. This curve is called a sum-curve.

Proof.—For consider any△1′′2′′2′′′ and the△𝑄𝑂𝑏′′. Since these△s have
their sides respectively parallel (by construction) they are similar,

and ∴ 2′′2′′′
1′′2′′ =

𝑂𝑏′′

𝑄𝑂

and∴ 2′′2′′′ × 𝑄𝑂 = 𝑂𝑏′′ × 1′′2′′ = 𝑏𝑏′ × 12 = area 11′2′2 approximately.
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I.e., the area 11′2′2 which has been added on in going from 1 to 2 is equal
to the increase in the ordinate of the Sum-Curve × the polar distance, and
similarly for the other elements of area. Wherefore, if we start from𝑂, the area
up to any point is equal to the ordinate up to that point × the polar distance.

Solid Geometry.

42. A polyhedron is a figure bounded on all sides by planes.
43. A prism is a polyhedron whose sides are parallelograms, and whose

extremities are equal polygons in parallel planes.
44. A parallelopiped is a polyhedron bounded by three pairs of parallel

planes.
45. A pyramid is a polyhedron, one of whose faces is a polygon, and the

others triangles, whose bases are the sides of the polygon, and having a com-
mon vertex.

46. A tetrahedron is a pyramid on a triangular base.
47. A frustum of a solid is that portion of it contained between the base and

another plane which cuts the solid.
48. A prismoid is a solid whose ends are similar figures, having their sides

parallel, and in parallel planes, or it is a frustum of a pyramid.

PROPOSITION 36.

The areas of the sections of a pyramidmade by planes parallel to the
base, are proportional to the squares of their distances from the vertex.

Let 𝐴𝐵𝐶𝐷 be a pyramid on a△r base 𝐵𝐶𝐷, and
let 𝐸𝐹𝐺 be a parallel section.

Draw 𝐴𝑃𝑄 perpendicular to the base, meeting
the parallel planes in 𝑃 and 𝑄. Join 𝐸𝑃, 𝐵𝑄.

Then ∵ 𝐸𝐹 ∥ 𝐵𝐶, 𝐸𝐺 ∥ 𝐵𝐷,F𝐺 ∥ 𝐶𝐷,
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the△𝐸𝐹𝐺 is equiangular to the△𝐵𝐶𝐷, and the
△𝐴𝐸𝐹 is similar to the△𝐴𝐵𝐶, and the△𝐴𝐸𝑃 to

the△𝐴𝐵𝑄,

∴ area 𝐸𝐹𝐺
area 𝐵𝐶𝐷 = 𝐸𝐹2

𝐵𝐶2
= 𝐴𝐸2

𝐴𝐵2
= 𝐴𝑃2

𝐴𝑄2
(Prop. 16 and 13.)

Also, if the pyramid is on a polygonal base, it can be decomposed into pyramids
on△r bases, and the theorem proved in the same manner.

Cor.—If two pyramids are on equal bases, and have equal altitudes, the
sections of them at equal distances from the base are equal.

PROPOSITION 37.

Thevolumeof a right prism is equal to the area of its basemultiplied
by the height.

For, if 𝑎, 𝑏 be the length and breadth of the base, there
are 𝑎 × 𝑏 units of area in the base; and on each unit
of area in the base there are as many units of volume as
there are units of length in the height ℎ.

∴ the whole volume = 𝑎𝑏ℎ.

PROPOSITION 38.

The volume of an oblique prism is equal to the area of its right sec-
tion multiplied by its length.

Let 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼𝐾 be an oblique prism, and let
a section at right ∠s to its edges be made by the
plane 𝐴𝐵′𝐶′𝐷′𝐸′. Then, if the wedge-shaped solid
𝐴𝐵𝐶𝐷𝐸𝐵′𝐶′𝐷′𝐸′ be placed at the other extremity, 𝐴
falling on 𝐹, 𝐵 on 𝐺, and so on, the volume of the origi-
nal prism will be equal to the volume of the right prism
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𝐴𝐵′𝐶′𝐷′𝐸′𝐹𝐺′𝐻′𝐼′𝐾′ = area of its base × height (Prop.
37).

Cor. 1.—The volume of a parallelopiped = the products of its base into its
altitude.

Cor. 2.—The volume of an oblique△r prism = area of its base multiplied
by the altitude; for it is half the volume of a parallelepiped.

Cor. 3.—The volume of any oblique prism = area of its base × the alti-
tude, for it may be divided up into triangular prisms.

PROPOSITION 39.

Pyramids on equal bases and of equal altitude are equal in volume.

Let 𝐴𝐵𝐶𝐷, 𝐴′𝐵′𝐶′𝐷′ be pyramids on equal bases and having the same al-
titude.

Then, if each be supposed divided into the same number of infinitely thin
layers, since the corresponding layers in each are equal in area (Prop. 36, Cor.)
and their thickness is the same, the sum of all those in the first must be equal
to the sum of all those in the second, and the volumes of the pyramids are
therefore equal.

PROPOSITION 40.

The volume of a pyramid is one-third of the prism standing on the
same base.
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Let 𝐴𝐵𝐶𝐷 be a pyramid. Through 𝐶, 𝐷 draw
lines parallel to 𝐴𝐵, and cut them by a plane 𝐴𝐸𝐹
parallel to 𝐵𝐶𝐷, forming a prism 𝐴𝐵𝐶𝐷𝐸𝐹. Join
𝐶𝐹. Then the prism is divided into three pyramids
𝐴𝐵𝐶𝐷, 𝐶𝐸𝐴𝐹, and 𝐹𝐷𝐶𝐴.

But 𝐴𝐵𝐶𝐷 = 𝐶𝐸𝐴𝐹, being on equal bases 𝐵𝐶𝐷,
𝐴𝐸𝐹, and having the same altitude (Prop. 39). Also 𝐴𝐵𝐶𝐷 = 𝐹𝐷𝐶𝐴, being
on equal bases 𝐴𝐵𝐷, 𝐹𝐴𝐷, and having the same altitude (Prop. 39).

∴ each pyramid = 1
3 prism.

Cor. 1.—The volume of a△r pyramid = 1

3
base × altitude.

Cor. 2.—The volume of any pyramid = 1

3
base × altitude.

PROPOSITION 41.

To find the volume of a frustum of a triangu-
lar pyramid betweenparallel planes, in terms of
its altitude and the areas of its bases.

Let 𝐴𝐵𝐶𝐷𝐸𝐹 be a frustum of a pyramid, the
plane 𝐴𝐵𝐶 being ∥ 𝐷𝐸𝐹.

Let it be cut by planes 𝐵𝐷𝐹, 𝐵𝐴𝐹 into three pyramids, viz., 𝐵𝐷𝐸𝐹, 𝐹𝐴𝐵𝐶,
𝐵𝐴𝐷𝐹.

Let the areas of 𝐴𝐵𝐶, 𝐷𝐸𝐹 be 𝑏, 𝐵, and the altitude of the frustum be ℎ.
Then 𝐵𝐷𝐸𝐹 = 1

3
ℎ ⋅ 𝐵 (Prop. 40, Cor. 1) and 𝐹𝐴𝐵𝐶 = 1

3
ℎ ⋅ 𝑏 (Prop. 40, Cor.

1).

𝐴𝑙𝑠𝑜 𝐵𝐴𝐷𝐹𝐵𝐴𝐶𝐹 = base 𝐴𝐷𝐹
base 𝐴𝐶𝐹

= 𝐷𝐹
𝐴𝐶 (Prop. 11, Cor.) =

√
𝐵

√
𝑏

(Prop. 16.)

and ∴ 𝐵𝐴𝐷𝐹 =
√
𝐵

√
𝑏
⋅ 𝐵𝐴𝐶𝐹 =

√
𝐵

√
𝑏

1
3 𝑏ℎ =

1
3 ℎ

√
𝐵𝑏

∴ the volume of the frustum = 1
3 ℎ{𝐵 +

√
𝐵𝑏 + 𝑏}
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that is, is equal to the volume of three pyramids having the same height as
the frustum, and having bases respectively equal to the parallel faces of the
frustum, and the geometric mean between them.

Cor.—This propertymay be extended to the frusta of all pyramids between
parallel planes, by considering them as made up of the frusta of pyramids on
triangular bases.

Trapezoidal Formula.

The formula 1

3
ℎ
{
𝐵 +

√
𝐵𝑏 + 𝑏

}
may be written in another form which is

convenient in the calculation of earthwork.

Let ℎ1ℎ2ℎ3 be the distances of the bottom, top and middle of the frustum
from the vertex.

Then if𝑀 be the area of the middle plane,

𝑀
𝑏
= (

ℎ3
ℎ2
)
2

but ℎ3 =
ℎ1 + ℎ2

2

∴ 𝑀 = 𝑏 (
ℎ1 + ℎ2
2ℎ2

)
2

= 1
4 𝑏 (

ℎ21 + ℎ22 + 2ℎ1ℎ2
ℎ22

)

but
ℎ21
ℎ22

= 𝐵
𝑏

∴
ℎ21 + ℎ22
ℎ22

= 𝐵 + 𝑏
𝑏
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∴ 𝑀 = 1
4 𝑏 {𝐵 + 𝑏

𝑏
+ 2

ℎ1
ℎ2
} = 1

4 𝑏 {
𝐵 + 𝑏
𝑏

+ 2
√

𝐵
𝑏
}

= 𝐵 + 𝑏
4 + 1

2

√
𝐵𝑏

∴ 4 times the middle area = 𝐵 + 𝑏 + 2
√
𝐵𝑏

Now, 13 ℎ
{
𝐵 +

√
𝐵𝑏 + 𝑏

}
=

ℎ
6

{
𝐵 + 𝑏 + 𝐵 + 𝑏 + 2

√
𝐵𝑏
}

= (Sum of the end areas + 4 times the middle area) multiplied into one-
sixth the height of the frustum.

PROPOSITION 42.

To find the volume of the frustum of a triangular prism.

Let 𝐴𝐵𝐶𝐷𝐸𝐹 be the frustum.
Let the base 𝐷𝐸𝐹 = 𝑏, and let ℎ, ℎ1, ℎ2 be the

altitudes of 𝐴, 𝐵, 𝐶 above the plane 𝐷𝐸𝐹.
First cut the frustum by a plane 𝐵𝐷𝐹.
The volume of the pyramid 𝐵𝐷𝐸𝐹 = 1

3
𝑏ℎ.

(Prop. 40, Cor. 1.)
Divide the remainder by a plane 𝐵𝐴𝐹 into pyramids 𝐵𝐴𝐷𝐹, 𝐴𝐵𝐶𝐹.
Now since 𝐵𝐴𝐷𝐹, 𝐸𝐴𝐷𝐹 stand upon the same base 𝐴𝐷𝐹 and have equal

altitudes (for 𝐵𝐸 ∥ 𝐴𝐷), 𝐵𝐴𝐷𝐹 = 𝐸𝐴𝐷𝐹 = 1

3
𝑏ℎ (Prop. 40, Cor. 1);

also 𝐴𝐵𝐶𝐹 = 𝐷𝐵𝐶𝐹 = 𝐷𝐸𝐶𝐹,
∵ they stand upon equal bases and have the same altitude,
∴ 𝐴𝐵𝐶𝐹 = 1

3
𝑏ℎ2.

∴ the volume of the whole frustum

= 𝐵𝐷𝐸𝐹 + 𝐵𝐴𝐷𝐹 + 𝐵𝐴𝐶𝐹

= 1
3 𝑏ℎ1 +

1
3 𝑏ℎ +

1
3 𝑏ℎ2.

= 1
3 𝑏(ℎ1 + ℎ2 + ℎ).
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Cor. 1.—In a right prism the volume of the frustum = the area of its right
section multiplied by onethird the sum of the parallel edges.

Cor. 2.—The volume of the frustum of an oblique prism = the area of its
right section × 1

3
sum of the parallel edges.

A useful corollary to Prop. 42 is the case of a
prism bounded by plane surfaces at the ends, which
are parallelograms or regular polygons.

Let the figure represent such a solid, where the
ends𝐴𝐸𝐹𝐵, 𝐶𝐷𝐻𝐺 are▱s or regular polygons, and
let ℎ1, ℎ2, ℎ3, ℎ4 be the altitudes of the points𝐴, 𝐵, 𝐹,
𝐸 above the plane 𝐶𝐷𝐻𝐺, respectively.

Then the volume of the triangular prisms𝐴𝐵𝐹𝐻𝐷𝐶 is 1

3
𝐶𝐷𝐻(ℎ1+ℎ2+ℎ3).

Also 𝐴𝐸𝐹𝐻𝐺𝐶 is 1

3
𝐶𝐺𝐻(ℎ1 + ℎ4 + ℎ3).

But if the ends are ▱s or regular polygons the diagonal 𝐶𝐻 divides the
base into equal areas, each equal to 𝐵

2
where 𝐵 is the area of the base

∴ the volume of the whole solid is = 1

3
⋅ 𝐵
2
(2ℎ1 + 2ℎ3 + ℎ2 + ℎ4).

Similarly, if the diagonals 𝐵𝐸, 𝐷𝐺 be drawn, it may be shown that the total
volume is 1

3
⋅ 𝐵
2
(2ℎ4 + 2ℎ2 + ℎ1 + ℎ3)

∴ 2 volume = 𝐵
6 (3ℎ1 + 3ℎ2 + 3ℎ3 + 3ℎ4)

= 𝐵
2 (ℎ1 + ℎ2 + ℎ3 + ℎ4)

∴ the volume 𝑉 = 1
4 𝐵(ℎ1 + ℎ2 + ℎ3 + ℎ4)

and similarly, for any other regular polygon of n sides

𝑉 = 1
𝑛 ⋅ 𝐵(ℎ1 + ℎ2 + ℎ3 +⋯ + ℎ𝑛)

In calculating the earthwork taken from borrow pits, the ground is staked
out in squares, whichmust be small enough that their surfaces may be consid-
ered planes, without sensible error. The height of the horizontal bottom of the
pit being taken with a level, and the heights of the corners of the square above
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a known datum being already determined, the differences give the heights of
the corners, and the volumes can then be determined as above.

In laying out the squares, the tape must be held horizontally.

49. A wedge is a polyhedron whose base is a trapezium and whose edge is
parallel to the base.

PROPOSITION 43.

To find the volume of a wedge.

Let 𝐴𝐵𝐶𝐷𝐸𝐹 be a wedge.

Then the volume 𝐾𝐿𝐶𝐻𝐺𝐷 = base 𝐶𝐻𝐿 × altitude 𝐶𝐷.

= 1
2 ℎ𝑙 × 𝑤,

where 𝑙 is the altitude of the wedge. (Prop. 37.)

Also the volume of the pyramid 𝐸𝐷𝐺𝐴

= 1
3 base 𝐴𝐷𝐺 × height. (Prop. 40, Cor. 1.)

= 1
3 ⋅

1
2 ⋅ 𝐴𝐺 ⋅ ℎ𝑙,

and the volume of the pyramid 𝐹𝐶𝐻𝐵

= 1
3 base 𝐶𝐻𝐵 × height

= 1
3 ⋅

1
2 ⋅ 𝐵𝐻 ⋅ ℎ𝑙 (Prop. 40, Cor. 1).
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Also the volume of the pyramid 𝐺𝐷𝐾𝐸

= 1
3 GDK × 𝐸𝐾 = 1

3 ⋅ 13 𝐺𝐷 × 𝑙 × 𝐸𝐾,

and the volume of the pyramid HCLF

= 1
3 base 𝐻𝐶𝐿 × 𝐿𝐹 = 1

3 ⋅
1
2 𝐻𝐶 ⋅ 𝑙 × 𝐿𝐹

∴ the whole volume = 1
2 𝑤ℎ𝑙 +

1
6 𝐴𝐺 ⋅ ℎ𝑙 + 1

6 𝐵𝐻 ⋅ ℎ𝑙 + 1
6 ℎ𝑙 ⋅ 𝐸𝐾 + 1

6 ℎ𝑙 ⋅ 𝐿𝐹.

= 𝑙ℎ
6 {3𝑤 + 𝐴𝐺 + 𝐵𝐻 + 𝐸𝐾 + 𝐿𝐹}

= 𝑙ℎ
6 {(𝑤 + 𝐸𝐾 + 𝐿𝐹) + 𝑤 + (𝑤 + 𝐴𝐺 + 𝐵𝐻)}

= 𝑙ℎ
6 (𝐸𝐹 + 𝑤 + 𝐴𝐵) , that is,

Add to the edge of the wedge the sums of the parallel sides of the base,
and multiply the result by onesixth of the width of the base multiplied by the
altitude of the wedge.

VOLUMES BOUNDED BY CURVED SURFACES.

The Cylinder.

50. A cylinder is a solid generated by a line which moves always parallel to
itself.

51. A right circular cylinder is the solid generated by the revolution of a
rectangle about one of its sides.

PROPOSITION 44.

To find the lateral surface and volume of a right circular cylinder.

Since the lateral surface = the area of a rectangle, whose base is equal to
the circumference of the cylinder= 𝜋𝑑, andwhose height is equal to its height
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ℎ, the lateral surface = 𝜋𝑑ℎ, where 𝑑 is the diameter of the cylinder and ℎ its
height.

Again, since the cylinder may be regarded as a right prism, whose base is
a polygon having an infinite number of sides,
its volume = area of the base × the length = 𝜋𝑟2ℎ, 𝑟 being the radius of the
base.

The Cone.

52. A cone is a solid generated by the movement of a straight line which
always passes through a fixed point.

53. A right circular cone is the solid generated by the revolution of a right-
angled triangle about one of the sides containing the right angle.

PROPOSITION 45.

To find the lateral surface and volume of a right circular cone.

Let 𝐴𝐵𝐶𝐷𝐸 be a right circular cone.
Inscribe in its base a regular polygon𝐵𝐶𝐷… , and

let planes 𝐴𝐶𝐷, &c., be drawn. Thus a polygonal
pyramid is inscribed within the cone, and when the
sides of the polygon are infinite in number the lateral
surface and volume of the pyramid are equal to the
lateral surface and volume of the cone.

But the area of a triangle𝐴𝐶𝐷 = 1

2
𝐶𝐷 × the per-

pendicular from 𝐴 on 𝐶𝐷, and ∴ the lateral surface
of the pyramid = 1

2
perimeter of the polygon × the perpendicular from 𝐴 on

one of the sides, and in the limit, the circumference of the polygon = circum-
ference of the○ and the perpendicular from𝐴 on the side= 𝐴𝐶. ∴ the lateral
surface of the cone = 1

2
circumference of the base × slant side.

Again, since volume of a pyramid= 1

3
base × height,
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the volume of a cone = 1

3
base × height = 1

3
𝜋𝑟2ℎ.

PROPOSITION 46.

To find the lateral surface of the frustum of a cone.

Let 𝐴𝐵𝐶𝐷 be the frustum, and let 𝐸𝐹 be midway between 𝐵𝐶 and
𝐴𝐷. Then the surface may be regarded as made up of an infinite number

of trapezia, whose parallel sides are the sides of regu-
lar polygons inscribed in the circular ends. But area
of a trapezium = 1

2
altitude × sum of the parallel

sides, and ∴ sum of all the trapeziums = 1

2
altitude

× sum of the circumferences of the parallel ends.
∴ the lateral surface of the frustum slant = 1

2
slant side × sum of the cir-

cumferences of the parallel ends = 1

2
slant side × circumference of the circle

midway between the ends = 2𝜋 ⋅ 𝐴𝐵 ⋅ 𝐸𝑂.

The Sphere.

54. A sphere is the solid generated by the revolution of a semicircle about
its diameter.

PROPOSITION 47.

To find the surface of a sphere.
The zone of the sphere generated by a small arc𝐴𝐵 is

ultimately equal to the surface of the frustum of a cone,
whose slant side is𝐴𝐵 and axis𝐻𝑂, when the chord𝐴𝐷
becomes infinitely small; and the surface of the sphere is
the sum of all such zones. Bisect 𝐴𝐵 in 𝐶, and draw 𝐶𝐷
perpendicular to𝐻𝑂.

The surface of the frustum = 2𝜋 ⋅ 𝐶𝐷 ⋅ 𝐴𝐵 (Prop. 46).
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Join 𝐶𝑂, and let 𝑀𝑁 be the projection of 𝐴𝐵 on 𝐻𝑂: then by similar tri-
angles 𝐶𝐷

𝐶𝑂
= 𝑀𝑁

𝐴𝐵
and ∴ 𝐶𝐷 ⋅ 𝐴𝐵 = 𝐶𝑂 × 𝑀𝑁
∴ the surface of the frustum = 2𝜋𝐶𝑂 × 𝑀𝑁
and ∴when the zone is infinitely narrow = 2𝜋 ⋅ 𝑟 ⋅𝑀𝑁 Also the sum of all

the projections of the arcs, such as𝑀𝑁 = 2𝑟

∴ surface of the sphere = 2 𝜋 𝑟 × 2 𝑟 = 4𝜋𝑟2

Cor. 1.—The area of any zone is in proportion to its height.

PROPOSITION 48.

To find the volume of a sphere.

Suppose the sphere to be made up of an infinite number of cones.
Then the volume of each cone = 1

3
base × altitude = 1

3
base × 𝑟, where

𝑟 is the radius of the sphere.
Also the whole volume of the sphere = sum of the volumes of all the cones

= 1
3 𝑟 × sum of all the bases

= 1
3 𝑟 × 4𝜋𝑟2 = 4

3𝜋𝑟
3 (Prop. 47).

or since 𝑟3 = 𝑑3

8
, the volume of the sphere = 𝜋𝑑3

6

PROBLEMS IN PLANE GEOMETRY FOUND

USEFUL IN DRAWING.

Problem 1.—To divide a straight line into two equal parts.
Let 𝐴𝐵 be the straight line.
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With𝐴 and 𝐵 as centres, and with the same radius, describe arcs intersect-
ing in 𝐶 and 𝐷. Then a line from 𝐶 to 𝐷 bisects 𝐴𝐵 in the point 𝐸. (Proof by
Prop. 5.)

Problem 2.—To divide an angle into two equal parts.
With 𝐵 as centre describe an arc cutting 𝐵𝐴 and 𝐵𝐶

in 𝐷 and 𝐸. With 𝐷 and 𝐸 as centres, and with the same
or another radius describe arcs cutting in 𝐹.

Then 𝐵𝐹 bisects the angle 𝐴𝐵𝐶. (Proof by Prop. 7.)

Problem 3.—To divide a line into any number of equal parts; seven, for
example.

Set off a line 𝐴𝐶, and on it mark
off seven equal parts, starting from𝐴,
and ending at 𝐷. Join 𝐷𝐵, and draw
parallels through the points 1, 2, 3,
&c. These will divide 𝐴𝐵 into seven

equal parts. (Proof by Prop. 13)

Problem 4.—To draw a triangle, whose sides are of known length.
Let 𝑎, 𝑏, 𝑐 be the sides of the triangle.

Take any one of the sides, such as 𝑐, and from
its ends, draw arcs with radii equal to 𝑎 and
𝑏 intersecting in 𝐶. Join 𝐴𝐶, 𝐵𝐶. (Proof by
Prop. 7.)

Problem 5.—To inscribe a circle in a given triangle.
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Let 𝐴𝐵𝐶 be the triangle.
Bisect any two of the angles (Problem 2).
Then the point 𝑂, where the bisecting

lines intersect, is the centre of the circle.
(Proof by Prop. 5.)

Problem 6.—To circumscribe a circle about a given triangle.
Let 𝐴𝐵𝐶 be the triangle.
Bisect any two of the sides (Problem 1).
Then the point𝑂, where the bisecting lines intersect,

is the centre of the circle. (Proof by Prop. 6.)

Problem 7.—To inscribe a hexagon in a given circle.
Set off the radius six times round the circle.

Then 𝐴𝐵𝐶𝐷𝐸𝐹 will be the hexagon required. (Proof by Prop. 6, Cor. 2.)

Problem 8.—To draw a circular arc through
three given points.

Let 𝐴, 𝐵, 𝐶 be the points.
Bisect 𝐴𝐵 and 𝐵𝐶 (Problem 1.)
Then the point𝑂, where the bisecting lines inter-

sect, is the centre of the arc required. (Proof by Prop.
20, Cor. 1.)

Problem 9.—To inscribe in a given angle a circle of given radius.
Let 𝐴𝐵𝐶 be the given angle.
Bisect the angle (Problem 2).
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Draw𝐶𝐷 at right angles to 𝐵𝐶 and equal to the given radius. Draw𝐷𝑂 parallel
to 𝐵𝐶. Then 𝑂 is the centre of the circle required. (Proof by Prop. 5.)

Problem 10.—To describe a circle of given radius to touch a given line and
a given circle.

Draw any line 𝑂𝐸, and make 𝐹𝐸 = given radius.
Draw an arc 𝐸𝐻 about𝑂. Set up𝐶𝐷 = radius, and draw𝐶𝐻 ∥ to𝐴𝐵. Then

𝐻 is the centre of the circle required.
If it be required to touch on the other side at 𝐺, set off 𝐺𝐻′ = given radius,

and draw an arc cutting 𝐶𝐻 produced in 𝐻′. Then𝐻′ is the centre required.

Problem 11.—To describe a circle, whose radius is given, to touch two given
circles.

Let 𝐴 and 𝐵 be the centres of the given circles.
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Set off 𝐶𝐷, 𝐸𝐹 equal to the given radius, and draw arcs to intersect in 𝑂.
Then 𝑂 is the centre of the circle required.

Problem 12.—To describe a circle tangent to a given line at a given point,
and touching a given circle.

Let 𝐴 be the centre of the given circle, 𝐶𝐷 the given line, and 𝑃 the given
point. Set off 𝑃𝐸 = 𝐴𝐹 and bisect𝐴𝐸 at right angles. Then𝑂 is centre of circle
required.

Problem 13.—To describe a circle tangent to a given line and touching a
given circle in a given point.
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Let 𝐴 be the centre of the given circle, 𝑃 the point, and 𝐵𝐶 the given line.
Join 𝐴𝑃 and produce. Draw 𝑃𝐷 perpendicular to 𝐴𝑃. Describe semicircle
𝐸𝑃𝐹. Erect a perpendicular 𝐹𝐺. Then 𝐺 is centre of circle required.

Problem 14.—To draw a circle to touch three given straight lines.
Let 𝐴𝐵, 𝐶𝐷, 𝐸𝐹 be the given lines.

Bisect the angles. The point of intersection of the bisectors will be the cen-
tre of the required circle.

This is equivalent to finding the centre of the escribed circle of a triangle.

BRADBURY, AGNEW, & CO. LD., PRINTERS, LONDON AND TONBRIDGE.
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