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INTRODUCTION

In the year 1660 the Royal Society was founded by royal favor in London, although in reality its inception took place in
1645 when the Philosophical Society (or, as Boyle called it, the “Invisible College”) came into being, which held
meetings at Gresham College in London and later in Oxford. It was during the second half of the seventeenth century that
Sir Isaac Newton, surrounded by a group of great men—Wallis, Hooke, Barrow, Halley, Cotes—carried on his epoch-
making researches in mathematics, astronomy, and physics. But it is not this half-century of science in England, nor any
of its great men, that especially engage our attention in this monograph. It is rather the half-century preceding, an epoch
of preparation, when in the early times of the House of Stuart the sciences began to flourish in England. Says Dr. A. E.
Shipley: “Whatever were the political and moral deficiencies of the Stuart kings, no one of them lacked intelligence in
things artistic and scientific.” It was at this time that mathematics, and particularly algebra, began to be cultivated with
greater zeal, when elementary algebra with its symbolism as we know it now began to take its shape.

Biographers of Sir Isaac Newton make particular mention of five mathematical books which he read while a young
student at Cambridge, namely, Euclid’s Elements, Descartes’s Géométrie, Vieta’s Works, Van Schooten’s Miscellanies,
and Oughtred’s Clavis mathematicae. The last of these books has been receiving increasing attention from the
historians of algebra in recent years. We have prepared this sketch because we felt that there were points of interest
in the life and activity of Oughtred which have not received adequate treatment. Historians have discussed his share in
the development of symbolic algebra, but some have fallen into errors, due to inability to examine the original editions
of Oughtred’s Clavis mathematicae, which are quite rare and inaccessible to most readers. Moreover, historians have
failed utterly to recognize his inventions of mathematical instruments, particularly the slide rule; they have completely
overlooked his educational views and his ideas on mathematical teaching. The modern reader may pause with profit to
consider briefly the career of this interesting man.

Oughtred was not a professional mathematician. He did not make his livelihood as a teacher of mathematics or as a
writer, nor as an engineer who applies mathematics to the control and use of nature’s forces. Oughtred was by profession
a minister of the gospel. With him the study of mathematics was a side issue, a pleasure, a recreation. Like the great
French algebraist, Vieta, from whom he drew much of his inspiration, he was an amateur mathematician. The word
“amateur” must not be taken here in the sense of superficial or unthorough. Great Britain has had many men distinguished
in science who pursued science as amateurs. Of such men Oughtred is one of the very earliest.

F. C.
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CHAPTER I 
OUGHTRED’S LIFE

AT SCHOOL AND UNIVERSITY

William Oughtred, or, as he sometimes wrote his name, Owtred, was born at Eton, the seat of Eton College, the year of
his birth being variously given as 1573, 1574, and 1575. “His father,” says Aubrey, “taught to write at Eaton, and was a
scrivener; and understood common arithmetique, and ’twas no small helpe and furtherance to his son to be instructed in it

when a schoole-boy.”
[1]

 He was a boy at Eton in the year of the Spanish Armada. At this famous school, which prepared
boys for the universities, young Oughtred received thorough training in classical learning.

According to information received from F. L. Clarke, Bursar and Clerk of King’s College, Cambridge, Oughtred was
admitted at King’s a scholar from Eton on September 1, 1592, at the age of seventeen. He was made Fellow at King’s on
September 1, 1595, while Elizabeth was still on the throne. He received in 1596 the degree of Bachelor of Arts and in
1600 that of Master of Arts. He vacated his fellowship about the beginning of August, 1603. His career at the University
of Cambridge we present in his own words. He says:

Next after Eaton schoole, I was bred up in Cambridge in Kings Colledge: of which society I was a member about
eleven or twelve yeares: wherein how I behaved my selfe, going hand in hand with the rest of my ranke in the ordinary
Academicall studies and exercises, and with what approbation, is well knowne and remembered by many: the time
which over and above those usuall studies I employed upon the Mathematicall sciences, I redeemed night by night
from my naturall sleep, defrauding my body, and inuring it to watching, cold, and labour, while most others tooke their
rest. Neither did I therein seek only my private content, but the benefit of many: and by inciting, assisting, and
instructing others, brought many into the love and study of those Arts, not only in our own, but in some other Colledges
also: which some at this time (men far better than my selfe in learning, degree, and preferment) will most lovingly

acknowledge.
[2]

These words describe the struggles which every youth not endowed with the highest genius must make to achieve
success. They show, moreover, the kindly feeling toward others and the delight he took throughout life in assisting
anyone interested in mathematics. Oughtred’s passion for this study is the more remarkable as neither at Eton nor at
Cambridge did it receive emphasis. Even after his time at Cambridge mathematical studies and their applications were
neglected there. Jeremiah Horrox was at Cambridge in 1633-35, desiring to make himself an astronomer.

“But many impediments,” says Horrox, “presented themselves: the tedious difficulty of the study itself deterred a mind
not yet formed; the want of means oppressed, and still oppresses, the aspirations of my mind: but that which gave me
most concern was that there was no one who could instruct me in the art, who could even help my endeavours by
joining me in the study; such was the sloth and languor which had seized all. . . . . I found that books must be used

instead of teachers.”
[3]

Some attention was given to Greek mathematicians, but the works of Italian, German, and French algebraists of the latter
part of the sixteenth and beginning of the seventeenth century were quite unknown at Cambridge in Oughtred’s day. It was
part of his life-work as a mathematician to make algebra, as it was being developed in his time, accessible to English
youths.

At the age of twenty-three Oughtred invented his Easy Way of Delineating Sun-Dials by Geometry, which, though not
published until about half a century later, in the first English edition of Oughtred’s Clavis mathematicae in 1647, was in
the meantime translated into Latin by Christopher Wren, then a Gentleman Commoner of Wadham College, Oxford, now
best known through his architectural creations. In 1600 Oughtred wrote a monograph on the construction of sun-dials
upon a plane of any inclination, but that paper was withheld by him from publication until 1632. Sun-dials were
interesting objects of study, since watches and pendulum clocks were then still unknown. All sorts of sun-dials, portable
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and non-portable, were used at that time and long afterward. Several of the college buildings at Oxford and Cambridge
have sun-dials even at the present time.

AS RECTOR AND AMATEUR MATHEMATICIAN

It was in 1604 that Oughtred entered upon his professional life-work as a preacher, being instituted to the vicarage of
Shalford in Surrey. In 1610 he was made rector of Albury, where he spent the remainder of his long life. Since the era of
the Reformation two of the rectors of Albury obtained great celebrity from their varied talents and acquirements—our
William Oughtred and Samuel Horsley. Oughtred continued to devote his spare time to mathematics, as he had done in
college. A great mathematical invention made by a Scotchman soon commanded his attention—the invention of
logarithms. An informant writes as follows:

Lord Napier, in 1614, published at Edinburgh his Mirifici logarithmorum canonis descriptio. . . . . It presently fell
into the hands of Mr. Briggs, then geometry-reader at Gresham College in London: and that gentleman, forming a
design to perfect Lord Napier’s plan, consulted Oughtred upon it; who probably wrote his Treatise of Trigonometry

about the same time, since it is evidently formed upon the plan of Lord Napier’s Canon.
[4]

It will be shown later that Oughtred is very probably the author of an “Appendix” which appeared in the 1618 edition of
Edward Wright’s translation into English of John Napier’s Descriptio. This “Appendix” relates to logarithms and is an
able document, containing several points of historical interest. Mr. Arthur Hutchinson of Pembroke College informs me
that in the university library at Cambridge there is a copy of Napier’s Constructio (1619) bound up with a copy of
Kepler’s Chilias logarithmorum (1624), that at the beginning of the Constructio is a blank leaf, and before this
occurs the title-page only of Napier’s Descriptio (1619), at the top of which appears Oughtred’s autograph. The
history of this interesting signature is unknown.

HIS WIFE

In 1606 he married Christ’sgift Caryll, daughter of Caryll, Esq., of Tangley, in an adjoining parish.
[5]

 We know very

little about Oughtred’s family life. The records at King’s College, Cambridge,
[6]

 mention a son, but it is certain that there
were more children. A daughter was married to Christopher Brookes. But there is no confirmation of Aubrey’s

statements,
[7]

 according to which Oughtred had nine sons and four daughters. Reference to the wife and children is
sometimes made in the correspondence with Oughtred. In 1616 J. Hales writes, “I pray let me be remembered, though

unknown, to Mistress Oughtred.”
[8]

As we shall see later, Oughtred had a great many young men who came to his house and remained there free of charge to
receive instruction in mathematics, which was likewise gratuitous. This being the case, certainly great appreciation was
due to Mrs. Oughtred, upon whom the burden of hospitality must have fallen. Yet chroniclers are singularly silent in
regard to her. Hers was evidently a life of obscurity and service. We greatly doubt the accuracy of the following item
handed down by Aubrey; it cannot be a true characterization:

His wife was a penurious woman, and would not allow him to burne candle after supper, by which meanes many a
good notion is lost, and many a probleme unsolved; so that Mr. [Thomas] Henshawe, when he was there, bought

candle, which was a great comfort to the old man.
[9]

IN DANGER OF SEQUESTRATION
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Oughtred spent his years in “unremitted attention to his favourite study,” sometimes, it has been whispered, to the neglect
of his rectorial duties. Says Aubrey:

I have heard his neighbour ministers say that he was a pittiful preacher; the reason was because he never studyed it,
but bent all his thoughts on the mathematiques; but when he was in danger of being sequestred for a royalist, he fell to

the study of divinity, and preacht (they sayd) admirably well, even in his old age.
[10]

This remark on sequestration brings to mind one of the political and religious struggles of the time, the episcopacy
against the independent movements. Says Manning:

In 1646 he was cited before the Committee for Ecclesiastical Affairs, where many articles had been deposed against
him; but, by the favour of Sir Bulstrode Whitlock and others, who, at the intercession of William Lilye the Astrologer,

appeared in great numbers on his behalf, he had a majority on his side, and so escaped a sequestration.
[11]

Not without interest is the account of this matter given by Lilly himself:

About this Time, the most famous Mathematician of all Europe, (Mr. William Oughtred, Parson of Aldbury in Surrey)
was in Danger of Sequestration by the Committee of or for plunder’d Ministers; (Ambo-dexters they were;) several
inconsiderable Articles were deposed and sworn against him, material enough to have sequestred him, but that,
upon his Day of hearing, I applied my self to Sir Bolstrode Whitlock, and all my own old Friends, who in such
Numbers appeared in his Behalf, that though the Chairman and many other Presbyterian Members were stiff against
him, yet he was cleared by the major Number. The truth is, he had a considerable Parsonage, and that only was enough
to sequester any moderate Judgment: He was also well known to affect his Majesty [Charles I]. In these Times many

worthy Ministers lost their Livings or Benefices, for not complying with the Three-penny Directory.
[12]

HIS TEACHING

Oughtred had few personal enemies. His pupils held him in highest esteem and showed deep gratitude; only one pupil
must be excepted, Richard Delamain. Against him arose a bitter controversy which saddened the life of Oughtred, then
an old man. It involved, as we shall see later, the priority of invention of the circular slide rule and of a horizontal
instrument or portable sun-dial. In defense of himself, Oughtred wrote in 1633 or 1634 the Apologeticall Epistle, from
which we quoted above. This document contains biographical details, in part as follows:

Ever since my departure from the Vniversity, which is about thirty yeares, I have lived neere to the Towne of
Guildford in Surrey: where, whether I have taken so much liberty to the losse of time, and the neglect of my calling
the whole Countrey thereabout, both Gentry and others, to whom I am full well knowne, will quickely informe him; my
house being not past three and twenty miles from London: and yet I so hid my selve at home, that I seldomly travelled
so farre as London once in a yeare. Indeed the life and mind of man cannot endure without some
interchangeablenesse of recreation, and pawses from the intensive actions of our severall callings; and every man
is drawne with his owne delight. My recreations have been diversity of studies: and as oft as I was toyled with the
labour of my owne profession, I have allayed that tediousnesse by walking in the pleasant and more then Elysian
fields of the diverse and various parts of humane learning, and not the Mathematics onely.

Even the opponents of Delamain must be grateful to him for having been the means of drawing from Oughtred such
interesting biographical details. Oughtred proceeds to tell how, about 1628, he was induced to write his Clavis
mathematicae, upon which his reputation as a mathematician largely rests:

About five yeares since, the Earle of Arundell my most honourable Lord in a time of his private retiring to his house in
the countrey then at West Horsley, foure small miles from me (though since he hath a house in Aldebury the parish
where I live) hearing of me (by what meanes I know not) was pleased to send for me: and afterward at London to
appoint mee a Chamber of his owne house: where, at such times, and in such manner as it seemed him good to imploy
me, and when I might not inconveniently be spared from my charge, I have been most ready to present my selfe in all
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humble and affectionate service: I hope also without the offence of God, the transgression of the good Lawes of this
Land, neglect of my calling, or the deserved scandall of any good man. . . . .

And although I am no mercenary man, nor make profession to teach any one in these arts for gaine and recompence,
but as I serve at the Altar, so I live onely of the Altar: yet in those interims that I am at London in my Lords service, I
have been still much frequented both by Natives and Strangers, for my resolution and instruction in many difficult
poynts of Art; and have most freely and lovingly imparted my selfe and my skill, such as I had, to their
contentments, and much honourable acknowledgement of their obligation to my Lord for bringing mee to London,
hath beene testifyed by many. Of which my liberallity and unwearyed readinesse to doe good to all, scarce any one
can give more ample testimony then R. D. himselfe can: would he be but pleased to allay the shame of this his hot and
eager contention, blowne up onely with the full bellowes of intended glory and gaine; . . . . they [the subjects in which
Delamain received assistance from Oughtred] were the first elements of Astronomie concerning the second motions of
the fixed starres, and of the Sunne and Moone; they were the first elements of Conics, to delineate those sections: they
were the first elements of Optics, Catoptrics, and Dioptrics: of all which you knew nothing at all.

These last passages are instructive as showing what topics were taken up for study with some of his pupils. The chief
subject of interest with most of them was algebra, which at that time was just beginning to draw the attention of English
lovers of mathematics.

Oughtred carried on an extensive correspondence on mathematical subjects. He was frequently called upon to assist in
the solution of knotty problems—sometimes to his annoyance, perhaps, as is shown by the following letter which he
wrote in 1642 to a stranger, named Price:

It is true that I have bestowed such vacant time, as I could gain from the study of divinity, (which is my calling,) upon
human knowledges, and, amongst other, upon the mathematics, wherein the little skill I have attained, being compared
with others of my profession, who for the most part contenting themselves only with their own way, refuse to tread
these salebrous and uneasy paths, may peradventure seem the more. But now being in years and mindful of mine end,
and having paid dearly for my former delights both in my health and state, besides the prejudice of such, who not
considering what incessant labour may produce, reckon so much wanting unto me in my proper calling, as they
think I have acquired in other sciences; by which opinion (not of the vulgar only) I have suffered both disrespect, and
also hinderance in some small perferments I have aimed at. I have therefore now learned to spare myself, and am not
willing to descend again in arenam, and to serve such ungrateful muses. Yet, sir, at your request I have perused your

problem. . . . . Your problem is easily wrought per Nicomedis conchoidem lineam.
[13]

APPEARANCE AND HABITS

Aubrey gives information about the appearance and habits of Oughtred:

He was a little man, had black haire, and blacke eies (with a great deal of spirit). His head was always working. He
would drawe lines and diagrams on the dust. . . . .

He [his oldest son Benjamin] told me that his father did use to lye a bed till eleaven or twelve a clock, with his
doublet on, ever since he can remember. Studyed late at night; went not to bed till 11 a clock; had his tinder box by
him; and on the top of his bed-staffe, he had his inke-horne fix’t. He slept but little. Sometimes he went not to bed in
two or three nights, and would not come downe to meales till he had found out the quaesitum.

He was more famous abroad for his learning, and more esteemed, then at home. Severall great mathematicians came
over into England on purpose to converse with him. His countrey neighbours (though they understood not his worth)
knew that there must be extraordinary worth in him, that he was so visited by foreigners. . . . .

When learned foreigners came and sawe how privately he lived, they did admire and blesse themselves, that a person
of so much worth and learning should not be better provided for. . . . .
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He has told bishop Ward, and Mr. Elias Ashmole (who was his neighbour), that “on this spott of ground” (or
“leaning against this oake” or “that ashe”), “the solution of such or such a probleme came into my head, as if
infused by a divine genius, after I had thought on it without successe for a yeare, two, or three.” . . . .

Nicolaus Mercator, Holsatus . . . . went to see him few yeares before he dyed. . . . .

The right hon
ble

 Thomas Howard, earle of Arundel and Surrey, Lord High Marshall of England, was his great patron,
and loved him intirely. One time they were like to have been killed together by the fall at Albury of a grott, which fell

downe but just as they were come out.
[14]

Oughtred’s friends convey the impression that, in the main, Oughtred enjoyed a comfortable living at Albury. Only once
appear indications of financial embarrassment. About 1634 one of his pupils, W. Robinson, writes as follows:

I protest unto you sincerely, were I as able as some, at whose hands you have merited exceedingly, or (to speak more
absolutely) as able as willing, I would as freely give you 500 l. per ann. as 500 pence; and I cannot but be astonished
at this our age, wherein pelf and dross is made their summum bonum, and the best part of man, with the true ornaments

thereof, science and knowledge, are so slighted. . . . .
[15]

In his letters Oughtred complains several times of the limitations for work and the infirmities due to his advancing old
age. The impression he made upon others was quite different. Says one biographer:

He sometimes amused himself with archery, and sometimes practised as a surveyor of land. . . . . He was sprightly and

active, when more than eighty years of age.
[16]

Another informant says that Oughtred was

as facetious in Greek and Latine as solid in Arithmetique, Astronomy, and the sphere of all Measures, Musick, etc.;
exact in his style as in his judgment; handling his Cube, and other Instruments at eighty, as steadily, as others did at
thirty; owing this, he said, to temperance and Archery; principling his people with plain and solid truths, as he did the
world with great and useful Arts; advancing new Inventions in all things but Religion. Which in its old order and

decency he maintained secure in his privacy, prudence, meekness, simplicity, resolution, patience, and contentment.
[17]

ALLEGED TRAVEL ABROAD

According to certain sources of information, Oughtred traveled on the European Continent and was invited to change his
abode to the Continent. We have seen no statement from Oughtred himself on this matter. He seldom referred to himself
in his books and letters. The autobiography contained in his Apologeticall Epistle was written a quarter of a century
before his death. Aubrey gives the following:

In the time of the civill warres the duke of Florence invited him over, and offered him 500 li. per annum; but he would

not accept it, because of his religion.
[18]

A portrait of Oughtred, painted in 1646 by Hollar and inserted in the English edition of the Clavis of 1647, contains
underneath the following lines:

“Haec est Oughtredi senio labantis imago
Itala quam cupiit, Terra Britanna tulit.”

In the sketch of Oughtred by Owen Manning it is confessed that “it is not known to what this alludes; but possibly he

might have been in Italy with his patron, the Earl of Arundel.”
[19]

 It would seem quite certain either that Oughtred
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traveled in Europe or that he received some sort of an offer to settle in Italy. In view of Aubrey’s explicit statement and
of Oughtred’s well-known habit of confining himself to his duties and studies in his own parish, seldom going even as
far as London, we strongly incline to the opinion that he did not travel on the Continent, but that he received an offer from
some patron of the sciences—possibly some distinguished visitor—to settle in Italy.

HIS DEATH

He died at Albury, June 30, 1660, aged about eighty-six years. Of his last days and death, Aubrey speaks as follows:

Before he dyed he burned a world of papers, and sayd that the world was not worthy of them; he was so superb. He
burned also severall printed bookes, and would not stirre, till they were consumed. . . . . I myselfe have his Pitiscus,
imbelished with his excellent marginall notes, which I esteeme as a great rarity. I wish I could also have got his
Bilingsley’s Euclid, which John Collins sayes was full of his annotations. . . . .

Ralph Greatrex, his great friend, the mathematicall instrument-maker, sayed he conceived he dyed with joy for the
comeing-in of the king, which was the 29th of May before. “And are yee sure he is restored?”—“Then give me a

glasse of sack to drinke his sacred majestie’s health.” His spirits were then quite upon the wing to fly away. . . . .
[20]

In this passage, as in others, due allowance must be made for Aubrey’s lack of discrimination. He was not in the
habit of sifting facts from mere gossip. That Oughtred should have declared that the world was not worthy of his
papers or manuscripts is not in consonance with the sweetness of disposition ordinarily attributed to him. More probable
was the feeling that the papers he burned—possibly old sermons—were of no particular value to the world. That he did
not destroy a large mass of mathematical manuscripts is evident from the fact that a considerable number of them came
after his death into the hands of Sir Charles Scarborough, M.D., under whose supervision some of them were carefully
revised and published at Oxford in 1677 under the title of Opuscula mathematica hactenus inedita.

Aubrey’s story of Oughtred’s mode of death has been as widely circulated in every modern biographical sketch as has
his slander of Mrs. Oughtred by claiming that she was so penurious that she would deny him the use of candles to read
by. Oughtred died on June 30; the Restoration occurred on May 29. No doubt Oughtred rejoiced over the Restoration, but
the story of his drinking “a glass of sack” to his Majesty’s health, and then dying of joy is surely apocryphal. De Morgan

humorously remarks, “It should be added, by way of excuse, that he was eighty-six years old.”
[21]
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CHAPTER II 
PRINCIPAL WORKS

“CLAVIS MATHEMATICAE”

Passing to the consideration of Oughtred’s mathematical books, we begin with the observation that he showed a marked
disinclination to give his writings to the press. His first paper on sun-dials was written at the age of twenty-three, but we
are not aware that more than one brief mathematical manuscript was printed before his fifty-seventh year. In every
instance, publication in printed form seems to have been due to pressure exerted by one or more of his patrons, pupils, or
friends. Some of his manuscripts were lent out to his pupils, who prepared copies for their own use. In some instances
they urged upon him the desirability of publication and assisted in preparing copy for the printer. The earliest and best-
known book of Oughtred was his Clavis mathematicae, to which repeated allusion has already been made. As he
himself informs us, he was employed by the Earl of Arundel about 1628 to instruct the Earl’s son, Lord William Howard
(afterward Viscount Stafford) in the mathematics. For the use of this young man Oughtred composed a treatise on algebra
which was published in Latin in the year 1631 at the urgent request of a kinsman of the young man, Charles Cavendish, a
patron of learning.

The Clavis mathematicae,
[22]

 in its first edition of 1631, was a booklet of only 88 small pages. Yet it contained in very
condensed form the essentials of arithmetic and algebra as known at that time.

Aside from the addition of four tracts, the 1631 edition underwent some changes in the editions of 1647 and 1648, which
two are much alike. The twenty chapters of 1631 are reduced to nineteen in 1647 and in all the later editions. Numerous
minute alterations from the 1631 edition occur in all parts of the books of 1647 and 1648. The material of the last three
chapters of the 1631 edition is rearranged, with some slight additions here and there. The 1648 edition has no preface. In
the print of 1652 there are only slight alterations from the 1648 edition; after that the book underwent hardly any
changes, except for the number of tracts appended, and brief explanatory notes added at the close of the chapters in
the English editions of 1694 and 1702. The 1652 and 1667 editions were seen through the press by John Wallis; the
1698 impression contains on the title-page the words: Ex Recognitione D. Johannis Wallis, S.T.D. Geometriae
Professoris Saviliani.

The cost of publishing may be a matter of some interest. When arranging for the printing of the 1667 edition of the
Clavis, Wallis wrote Collins: “I told you in my last what price she [Mrs. Lichfield] expects for it, as I have formerly

understood from her, viz., £ 40 for the impression, which is about 9½d. a book.”
[23]

As compared with other contemporary works on algebra, Oughtred’s distinguishes itself for the amount of symbolism
used, particularly in the treatment of geometric problems. Extraordinary emphasis was placed upon what he called in the

Clavis the “analytical art.”
[24]

 By that term he did not mean our modern analysis or analytical geometry, but the art

“in which by taking the thing sought as knowne, we finde out that we seeke.”
[25]

 He meant to express by it condensed
processes of rigid, logical deduction expressed by appropriate symbols, as contrasted with mere description or
elucidation by passages fraught with verbosity. In the preface to the first edition (1631) he says:

In this little book I make known . . . . the rules relating to fundamentals, collected together, just like a bundle, and
adapted to the explanation of as many problems as possible.

As stated in this preface, one of his reasons for publishing the book, is

. . . . that like Ariadne I might offer a thread to mathematical study by which the mysteries of this science might be
revealed, and direction given to the best authors of antiquity, Euclid, Archimedes, the great geometrician Apollonius
of Perga, and others, so as to be easily and thoroughly understood, their theorems being added, not only because to
many they are the height and depth of mathematical science (I ignore the would-be mathematicians who occupy



[21]

[22]

[23]

themselves only with the so-called practice, which is in reality mere juggler’s tricks with instruments, the surface so
to speak, pursued with a disregard of the great art, a contemptible picture), but also to show with what keenness they
have penetrated, with what mass of equations, comparisons, reductions, conversions and disquisitions these heroes
have ornamented, increased and invented this most beautiful science.

The Clavis opens with an explanation of the Hindu-Arabic notation and of decimal fractions. Noteworthy is the absence
of the words “million,” “billion,” etc. Though used on the Continent by certain mathematical writers long before this,
these words did not become current in English mathematical books until the eighteenth century. The author was a
great admirer of decimal fractions, but failed to introduce the notation which in later centuries came to be
universally adopted. Oughtred wrote 0.56 in this manner 0|56; the point he used to designate ratio. Thus 3:4 was written
by him 3·4. The decimal point (or comma) was first used by the inventor of logarithms, John Napier, as early as 1616
and 1617. Although Oughtred had mastered the theory of logarithms soon after their publication in 1614 and was a great
admirer of Napier, he preferred to use the dot for the designation of ratio. This notation of ratio is used in all his
mathematical books, except in two instances. The two dots (:) occur as symbols of ratio in some parts of Oughtred’s
posthumous work, Opuscula mathematica hactenus inedita, Oxford, 1677, but may have been due to the editors and not
to Oughtred himself. Then again the two dots (:) are used to designate ratio on the last two pages of the tables of the
Latin edition of Oughtred’s Trigonometria of 1657. In all other parts of that book the dot (·) is used. Probably someone
who supervised the printing of the tables introduced the (:) on the last two pages, following the logarithmic tables, where
methods of interpolation are explained. The probability of this conjecture is the stronger, because in the English edition
of the Trigonometrie, brought out the same year (1657) but after the Latin edition, the notation (:) at the end of the book
is replaced by the usual (·), except that in some copies of the English edition the explanations at the end are omitted
altogether.

Oughtred introduces an interesting, and at the same time new, feature of an abbreviated multiplication and an abbreviated
division of decimal fractions. On this point he took a position far in advance of his time. The part on abbreviated
multiplication was rewritten in slightly enlarged form and with some unimportant alterations in the later edition of
the Clavis. We give it as it occurs in the revision. Four cases are given. In finding the product of 246|914 and 35|27, “if
you would have the Product without any Parts” (without any decimal part), “set the place of Unity of the lesser under the
place of Unity in the greater: as in the Example,” writing the figures of the lesser number in inverse order. From the
example it will be seen that he begins by multiplying by 3, the right-hand digit of the multiplier. In the first edition of the
Clavis he began with 7, the left digit. Observe also that he “carries” the nearest tens in the product of each lower digit
and the upper digit one place to its right. For instance, he takes 7×4=28 and carries 3, then he finds 7×2+3=17 and writes
down 17.

  2 4 6|9 1 4
  7 2|5 3
  -------
  7 4 0 7
  1 2 3 5
      4 9
      1 7
  -------
  8 7 0 8

The second case supposes that “you would have the Product with some places of parts” (decimals), say 4: “Set the place
of Unity of the lesser Number under the Fourth place of the Parts of the greater.” The multiplication of 246|914 by 35|27
is now performed thus:

  2 4 6|9 1 4
          7 2|5 3
  ---------------
  7 4 0 7 4 2 0 0
  1 2 3 4 5 7 0 0
      4 9 3 8 2 8
      1 7 2 8 4 0
  ---------------
  8 7 0 8|6 5 6 8

In the third and fourth cases are considered factors which appear as integers, but are in reality decimals; for
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[25]

instance, the sine of 54° is given in the tables as 80902 when in reality it is .80902.

Of interest as regards the use of the word “parabola” is the following: “The Number found by Division is called the
Quotient, or also Parabola, because it arises out of the Application of a plain Number to a given Longitude, that a

congruous Latitude may be found.”
[26]

 This is in harmony with etymological dictionaries which speak of a parabola as
the application of a given area to a given straight line. The dividend or product is the area; the divisor or factor is the
line.

Oughtred gives two processes of long division. The first is identical with the modern process, except that the divisor is
written below every remainder, each digit of the divisor being crossed out as soon as it has been used in the partial
multiplication. The second method of long division is one of the several types of the old “scratch method.” This
antiquated process held its place by the side of the modern method in all editions of the Clavis. The author divides
467023 by 357|0926425, giving the following instructions: “Take as many of the first Figures of the Divisor as are
necessary, for the first Divisor, and then in every following particular Division drop one of the Figures of the Divisor
towards the Left Hand, till you have got a competent Quotient.” He does not explain abbreviated division as thoroughly
as abbreviated multiplication.

                    17
                   3 0 3
                  2 8 0 3
                1 0 9 9 3 0
  35̣7̣|̣09̣2̣6̣425)  4 6 7 0 2 3   (1307|80
                3 5 7 0 9 3
                1 0 7 1 2 7
                  2 5 0 0
                   2 8 6

Oughtred does not examine the degree of reliability or accuracy of his processes of abbreviated multiplication and
division. Here as in other places he gives in condensed statement the mode of procedure, without further discussion.

He does not attempt to establish the rules for the addition, subtraction, multiplication, and division of positive and
negative numbers. “If the Signs are both alike, the Product will be affirmative, if unlike, negative”; then he proceeds to
applications. This attitude is superior to that of many writers of the eighteenth and nineteenth centuries, on pedagogical
as well as logical grounds: pedagogically, because the beginner in the study of algebra is not in a position to appreciate
an abstract train of thought, as every teacher well knows, and derives better intellectual exercise from the applications of
the rules to problems; logically, because the rule of signs in multiplication does not admit of rigorous proof, unless some
other assumption is first made which is no less arbitrary than the rule itself. It is well known that the proofs of the rule of
signs given by eighteenth-century writers are invalid. Somewhere they involve some surreptitious assumption. This
criticism applies even to the proof given by Laplace, which tacitly assumes the distributive law in multiplication.

A word should be said on Oughtred’s definition of + and -. He recognizes their double function in algebra by saying
(Clavis, 1631, p. 2): “Signum additionis, sive affirmationis, est + plus” and “Signum subductionis, sive negationis
est - minus.” They are symbols which indicate the quality of numbers in some instances and operations of addition or
subtraction in other instances. In the 1694 edition of the Clavis, thirty-four years after the death of Oughtred, these
symbols are defined as signifying operations only, but are actually used to signify the quality of numbers as well. In this
respect the 1694 edition marks a recrudescence.

The characteristic in the Clavis that is most striking to a modern reader is the total absence of indexes or exponents.
There is much discussion in the leading treatises of the latter part of the sixteenth and the early part of the seventeenth
century on the theory of indexes, but the modern exponential notation, aⁿ, is of later date. The modern notation, for
positive integral exponents, first appears in Descartes’ Géométrie, 1637; fractional and negative exponents were first
used in the modern form by Sir Isaac Newton, in his announcement of the binomial formula, in a letter written in 1676.
This total absence of our modern exponential notation in Oughtred’s Clavis gives it a strange aspect. Like Vieta,
Oughtred uses ordinarily the capital letters, A, B, C, . . . . to designate given numbers; A² is written Aq, A³ is written Ac;
for A , A , A  he has, respectively, Aqq, Aqc, Acc. Only on rare occasions, usually when some parallelism in notation is

̸ ̸ ̸
̸ ̸ ̸ ̸

̸ ̸ ̸ ̸ ̸ ̸
̸ ̸ ̸ ̸ ̸ ̸
̸ ̸ ̸ ̸ ̸ ̸
̸ ̸ ̸ ̸ ̸ ̸

̸ ̸ ̸ ̸
̸ ̸ ̸
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[28]

aimed at, does he use small letters
[27]

 to represent numbers or magnitudes. Powers of binomials or polynomials are
marked by prefixing the capital letters Q (for square), C (for cube), QQ (for the fourth power), QC (for the fifth power),
etc.

Oughtred does not express aggregation by (). Parentheses had been used by Girard, and by Clavius as early as 1609,
[28]

but did not come into general use in mathematical language until the time of Leibniz and the Bernoullis. Oughtred
indicates aggregation by writing a colon (:) at both ends. Thus, Q:A-E: means with him (A-E)². Similarly, √q:A+E: means
√(A+E). The two dots at the end are frequently omitted when the part affected includes all the terms of the polynomial to
the end. Thus, C:A+B-E=.. means (A+B-E)³=.. There are still further departures from this notation, but they occur so
seldom that we incline to the interpretation that they are simply printer’s errors. For proportion Oughtred uses the
symbol (::). The proportion a:b=c:d appears in his notation a·b::c·d. Apparently, a proportion was not fully recognized
in this day as being the expression of an equality of ratios. That probably explains why he did not use = here as in the
notation of ordinary equations. Yet Oughtred must have been very close to the interpretation of a proportion as an
equality; for he says in his Elementi decimi Euclidis declaratio, “proportio, sive ratio aequalis ::” That he introduced
this extra symbol when the one for equality was sufficient is a misfortune. Simplicity demands that no unnecessary
symbols be introduced. However, Oughtred’s symbolism is certainly superior to those which preceded. Consider the

notation of Clavius.
[29]

 He wrote 20:60=4:x, x=12, thus: “20·60·4? fiunt 12.” The insufficiency of such a notation in
the more involved expressions frequently arising in algebra is readily seen. Hence Oughtred’s notation (::) was early
adopted by English mathematicians. It was used by John Wallis at Oxford, by Samuel Foster at Gresham College, by
James Gregory of Edinburgh, by the translators into English of Rahn’s algebra, and by many other early writers.
Oughtred has been credited generally with the introduction of St. Andrew’s cross × as the symbol for multiplication in
the Clavis of 1631. We have discovered that this symbol, or rather the letter x which closely resembles it, occurs as the
sign of multiplication thirteen years earlier in an anonymous “Appendix to the Logarithmes, shewing the practise of the

Calculation of Triangles etc.” to Edward Wright’s translation of John Napier’s Descriptio, published in 1618.
[30]

 Later
we shall give our reasons for believing that Oughtred is the author of that “Appendix.” The × has survived as a symbol
of multiplication.

Another symbol introduced by Oughtred and found in modern books is ~, expressing difference; thus C~D signifies the

difference between C and D, even when D is the larger number.
[31]

 This symbol was used by John Wallis in 1657.
[32]

Oughtred represented in symbols also certain composite expressions, as for instance A+E=Z, A-E=X, where A is greater
than E. He represented by a symbol also each of the following: A²+E², A³+E³, A²-E², A³-E³.

Oughtred practically translated the tenth book of Euclid from its ponderous rhetorical form into that of brief
symbolism. An appeal to the eye was a passion with Oughtred. The present writer has collected the different
mathematical symbols used by Oughtred and has found more than one hundred and fifty of them.

The differences between the seven different editions of the Clavis lie mainly in the special parts appended to some
editions and dropped in the latest editions. The part which originally constituted the Clavis was not materially altered,
except in two or three of the original twenty chapters. These changes were made in the editions of 1647 and 1648. After
the first edition, great stress was laid upon the theory of indices upon the very first page, as also in passages farther on.
Of course, Oughtred did not have our modern notation of indices or exponents, but their theory had been a part of algebra
and arithmetic for some time. Oughtred incorporated this theory in his brief exposition of the Hindu-Arabic notation and
in his explanation of logarithms. As previously pointed out, the last three chapters of the 1631 edition were considerably
rearranged in the later editions and combined into two chapters, so that the Clavis proper had nineteen chapters instead
of twenty in the additions after the first. These chapters consisted of applications of algebra to geometry and were so
framed as to constitute a severe test of the student’s grip of the subject. The very last problem deals with the division of
angles into equal parts. He derives the cubic equation upon which the trisection depends algebraically, also the
equations of the fifth degree and seventh degree upon which the divisions of the angle into 5 and 7 equal parts depend,
respectively. The exposition was severely brief, yet accurate. He did not believe in conducting the reader along
level paths or along slight inclines. He was a guide for mountain-climbers, and woe unto him who lacked nerve.
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[30]

Oughtred lays great stress upon expansions of powers of a binomial. He makes use of these expansions in the solution of
numerical equations. To one who does not specialize in the history of mathematics such expansions may create surprise,
for did not Newton invent the binomial theorem after the death of Oughtred? As a matter of fact, the expansions of
positive integral powers of a binomial were known long before Newton, not only to seventeenth-century but even to
eleventh-century mathematicians. Oughtred’s Clavis of 1631 gave the binomial coefficients for all powers up to and
including the tenth. What Newton really accomplished was the generalization of the binomial expansion which makes it
applicable to negative and fractional exponents and converts it into an infinite series.

As a specimen of Oughtred’s style of writing we quote his solution of quadratic equations, accompanied by a translation
into English and into modern mathematical symbols.

As a preliminary step
[33]

 he lets

Z=A+E and A>E;

he lets also X=A-E. From these relations he obtains identities which, in modern notation, are ¼Z²-AE=(½Z-E)²=¼X².
Now, if we know Z and AE, we can find ½X. Then ½(Z+X)=A, and ½(Z-X)=E, and

A=½Z+√¼Z²-AE.

Having established these preliminaries, he proceeds thus:

Datis igitur linea inaequaliter secta Z (10), & rectangulo sub segmentis AE (21) qui gnomon est: datur semidifferentia
segmentorum ½X: & per consequens ipsa segmenta. Nam ponatur alterutrum segmentum A: alterum erit Z-A:
Rectangulum auctem est ZA-Aq=AE. Et quia dantur Z & AE: estque ¼Zq-AE=¼Xq: & per 5c. 18, ½Z+½X=A: & ½Z-

½X=E: Aequatio sic resoluetur: ½Z±√q:¼Zq-AE:=A { maius segment
minus segment.

Itaque proposita equatione, in qua sunt tres species aequaliter in ordine tabellae adscendentes, altissima autem
species ponitur negata: Magnitudo data coefficiens mediam speciem est linea bisecanda: & magnitudo absoluta data,
ad quam sit aequatio, est rectangulum sub segmentis inaequalibus, sine gnomon: vt ZA-Aq=AE: in numeris autem
10l-lq=21: Estque A, vel 1l, alterutrum segmentum inaequale. Inuenitur autem sic:

Dimidiata coefficiens median speciem est Z
2

 (5); cuius quadratum est Zq
4

 (25): ex hoc tolle AE (21) absolutum:

eritque Zq
4

-AE  (4) quadratum semidifferentiae segmentorum: latus huius quadratum (2) est semidifferentia: quam si

addas ad Z
2

 (5) semissem coefficientis, sive lineae bisecandae, erit maius segment.; sin detrahas, erit minus segment:

Dico Z
2

±√q: Zq
4

-AE:=A  { maius segmentum
minus segmentum.

We translate the Latin passage, using the modern exponential notation and parentheses, as follows:

Given therefore an unequally divided line Z (10), and a rectangle beneath the segments AE (21) which is a gnomon.
Half the difference of the segments ½X is given, and consequently the segment itself. For, if one of the two
segments is placed equal to A, the other will be Z-A. Moreover, the rectangle is ZA-A²=AE. And because Z and AE
are given, and there is ¼Z²-AE=¼X², and by 5c.18, ½Z+½X=A, and ½Z-½X=E, the equation will be solved thus:

½Z±√(¼Z²-AE)=A { major segment
minor segment.

And so an equation having been proposed in which three species (terms) are in equally ascending powers, the highest
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[33]

species, moreover, being negative, the given magnitude which constitutes the middle species is the line to be bisected.
And the given absolute magnitude to which it is equal is the rectangle beneath the unequal segments, without gnomon.
As ZA-A²=AE, or in numbers, 10x-x²=21. And A or x is one of the two unequal segments. It may be found thus:

The half of the middle species is Z
2

 (5), its square is Z²
4

 (25). From it subtract the absolute term AE (21), and Z²
4 -AE

(4) will be the square of half the difference of the segments. The square root of this, √ [( Z²
2 ) ²

 -AE ]  (2), is half the

difference. If you add it to half the coefficient Z
2

 (5), or half the line to be bisected, the longer segment is obtained; if

you subtract it, the smaller segment is obtained. I say:

Z
2 ±√ ( Z²

4 -AE ) =A{ major segment
minor segment.

The quadratic equation Aq+ZA=AE receives similar treatment. This and the preceding equation, ZA-Aq=AE, constitute
together a solution of the general quadratic equation, x²+ax=b, provided that E or Z are not restricted to positive values,
but admit of being either positive or negative, a case not adequately treated by Oughtred. Imaginary numbers and
imaginary roots receive no consideration whatever.

A notation suggested by Vieta and favored by Girard made vowels stand for unknowns and consonants for knowns. This
conventionality was adopted by Oughtred in parts of his algebra, but not throughout. Near the beginning he used Q to

designate the unknown, though usually this letter stood with him for the “square” of the expression after it.
[34]

It is of some interest that Oughtred used π
δ

 to signify the ratio of the circumference to the diameter of a circle. Very

probably this notation is the forerunner of the π=3.14159 . . . . used in 1706 by William Jones. Oughtred first used π
δ

 in

the 1647 edition of the Clavis mathematicae. In the 1652 edition he says, “Si in circulo sit 7.22::δ·π::113.355:erit

δ·π::2 R.P: periph.” This notation was adopted by Isaac Barrow, who used it extensively. David Gregory
[35]

 used π
ρ

 in

1697, and De Moivre
[36]

 used c
r

 about 1697, to designate the ratio of the circumference to the radius.

We quote the description of the Clavis that was given by Oughtred’s greatest pupil, John Wallis. It contains
additional information of interest to us. Wallis devotes chap. xv of his Treatise of Algebra, London, 1685, pp. 67-
69, to Mr. Oughtred and his Clavis, saying:

Mr. William Oughtred (our Country-man) in his Clavis Mathematicae, (or Key of Mathematicks,) first published in
the Year 1631, follows Vieta (as he did Diophantus) in the use of the Cossick Denominations; omitting (as he had
done) the names of Sursolids, and contenting himself with those of Square and Cube, and the Compounds of these.

But he doth abridge Vieta’s Characters or Species, using only the letters q, c, &c. which in Vieta are expressed (at
length) by Quadrate, Cube, &c. For though when Vieta first introduced this way of Specious Arithmetick, it was more
necessary (the thing being new,) to express it in words at length: Yet when the thing was once received in practise,
Mr. Oughtred (who affected brevity, and to deliver what he taught as briefly as might be, and reduce all to a short
view,) contented himself with single Letters instead of those words.

Thus what Vieta would have written

A Quadrate, into B Cube,
CDE Solid,

 Equal to FG Plane,
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[36]

would with him be thus expressed

Aq Bc
C D E

=FG.

And the better to distinguish upon the first view, what quantities were Known, and what Unknown, he doth (usually)
denote the Known to Consonants, and the Unknown by Vowels; as Vieta (for the same reason) had done before him.

He doth also (to very great advantage) make use of several Ligatures, or Compendious Notes, to signify Summs,
Differences, and Rectangles of several Quantities. As for instance, Of two Quantities A (the Greater), and E (the
Lesser), the Sum he calls Z, the Difference X, the Rectangle AE. . . . .

Which being of (almost) a constant signification with him throughout, do save a great circumlocution of words, (each
Letter serving instead of a Definition;) and are also made use of (with very great advantage) to discover the true
nature of divers intricate Operations, arising from the various compositions of such Parts, Sums, Differences, and
Rectangles; (of which there is great plenty in his Clavis, Cap. 11, 16, 18, 19. and elsewhere,) which without such
Ligatures, or Compendious Notes, would not be easily discovered or apprehended. . . . .

I know there are who find fault with his Clavis, as too obscure, because so short, but without cause; for his words be
always full, but not Redundant, and need only a little attention in the Reader to weigh the force of every word, and the
Syntax of it; . . . . And this, when once apprehended, is much more easily retained, than if it were expressed with the
prolixity of some other Writers; where a Reader must first be at the pains to weed out a great deal of superfluous
Language, that he may have a short prospect of what is material; which is here contracted for him in a short Synopsis. .
. . .

Mr. Oughtred in his Clavis, contents himself (for the most part) with the solution of Quadratick Equations, without
proceeding (or very sparingly) to Cubick Equations, and those of Higher Powers; having designed that Work for an
Introduction into Algebra so far, leaving the Discussion of Superior Equations for another work. . . . . He contents
himself likewise in Resolving Equations, to take notice of the Affirmative or Positive Roots; omitting the Negative or
Ablative Roots, and such as are called Imaginary or Impossible Roots. And of those which, he calls Ambiguous
Equations, (as having more Affirmative Roots than one,) he doth not (that I remember) any where take notice of more
than Two Affirmative Roots: (Because in Quadratick Equations, which are those he handleth, there are indeed no
more.) Whereas yet in Cubick Equations, there may be Three, and in those of Higher Powers, yet more. Which
Vieta was well aware of, and mentioneth in some of his Writings; and of which Mr. Oughtred could not be
ignorant.

“CIRCLES OF PROPORTION” AND “TRIGONOMETRIE”

Oughtred wrote and had published three important mathematical books, the Clavis, the Circles of Proportion,
[37]

 and a

Trigonometrie.
[38]

 This last appeared in the year 1657 at London, in both Latin and English.

It is claimed that the trigonometry was “neither finished nor published by himself, but collected out of his scattered
papers; and though he connived at the printing it, yet imperfectly done, as appears by his MSS.; and one of the printed

Books, corrected by his own Hand.”
[39]

 Doubtless more accurate on this point is a letter of Richard Stokes who saw
the book through the press:

I have procured your Trigonometry to be written over in a fair hand, which when finished I will send to you, to know
if it be according to your mind; for I intend (since you were pleased to give your assent) to endeavour to print it with
Mr. Briggs his Tables, and so soon as I can get the Prutenic Tables I will turn those of the sun and moon, and send

them to you.
[40]
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[39]

In the preface to the Latin edition Stokes writes:

Since this trigonometry was written for private use without the intention of having it published, it pleased the
Reverend Author, before allowing it to go to press, to expunge some things, to change other things and even to make
some additions and insert more lucid methods of exposition.

This much is certain, the Trigonometry bears the impress characteristic of Oughtred. Like all his mathematical writings,
the book was very condensed. Aside from the tables, the text covered only 36 pages. Plane and spherical triangles were
taken up together. The treatise is known in the history of trigonometry as among the very earliest works to adopt a
condensed symbolism so that equations involving trigonometric functions could be easily taken in by the eye. In the work
of 1657, contractions are given as follows: s=sine, t=tangent, se=secant, s co=cosine (sine complement), t co=cotangent,
se co=cosecant, log=logarithm, Z cru=sum of the sides of a rectangle or right angle, X cru=difference of these sides. It
has been generally overlooked by historians that Oughtred used the abbreviations of trigonometric functions, named
above, a quarter of a century earlier, in his Circles of Proportion, 1632, 1633. Moreover, he used sometimes also
the abbreviations which are current at the present time, namely sin=sine, tan=tangent, sec=secant. We know that the
Circles of Proportion existed in manuscript many years before they were published. The symbol sv for sinus versus
occurs in the Clavis of 1631. The great importance of well-chosen symbols needs no emphasis to readers of the present
day. With reference to Oughtred’s trigonometric symbols. Augustus De Morgan said:

This is so very important a step, simple as it is, that Euler is justly held to have greatly advanced trigonometry by its
introduction. Nobody that we know of has noticed that Oughtred was master of the improvement, and willing to have

taught it, if people would have learnt.
[41]

We find, however, that even Oughtred cannot be given the whole credit in this matter. By or before 1631 several other
writers used abbreviations of the trigonometric functions. As early as 1624 the contractions sin for sine and tan for
tangent appear on the drawing representing Gunter’s scale, but Gunter did not use them in his books, except in the

drawing of his scale.
[42]

 A closer competitor for the honor of first using these trigonometric abbreviations is Richard
Norwood in his Trigonometrie, London, 1631, where s stands for sine, t for tangent, sc for sine complement (cosine), tc
for tangent complement (cotangent), and sec for secant. Norwood was a teacher of mathematics in London and a well-
known writer of books on navigation. Aside from the abbreviations just cited Norwood did not use nearly as much
symbolism in his mathematics as did Oughtred.

Mention should be made of trigonometric symbols used even earlier than any of the preceding, in “An Appendix to the
Logarithmes, shewing the practise of the Calculation of Triangles, etc.,” printed in Edward Wright’s edition of Napier’s
A Description of the Admirable Table of Logarithmes, London, 1618. We referred to this “Appendix” in tracing the
origin of the sign ×. It contains, on p. 4, the following passage: “For the Logarithme of an arch or an angle I set before
(s), for the antilogarithme or compliment thereof (s*) and for the Differential (t).” In further explanation of this rather
unsatisfactory passage, the author (Oughtred?) says, “As for example: sB+BC=CA. that is, the Logarithme of an angle B.
at the Base of a plane right-angled triangle, increased by the addition of the Logarithm of BC, the hypothenuse thereof, is
equall to the Logarithme of CA the cathetus.”

Here “logarithme of an angle B” evidently means “log sin B,” just as with Napier, “Logarithms of the arcs” signifies
really “Logarithms of the sines of the angles.” In Napier’s table, the numbers in the column marked “Differentiae” signify
log sine minus log cosine of an angle; that is, the logarithms of the tangents. This explains the contraction (t) in the
“Appendix.” The conclusion of all this is that as early as 1618 the signs s, s*, t were used for sine, cosine, and tangent,
respectively.

John Speidell, in his Breefe Treatise of Sphaericall Triangles, London, 1627, uses Si. for sine, T. and Tan for tangent,
Se. for secant, Si. Co. for cosine, Se. Co. for cosecant, T. Co. for cotangent.

The innovation of designating the sides and angles of a triangle by A, B, C, and a, b, c, so that A was opposite a, B
opposite b, and C opposite c, is attributed to Leonard Euler (1753), but was first used by Richard Rawlinson of

Queen’s College, Oxford, sometimes after 1655 and before 1668. Oughtred did not use Rawlinson’s notation.
[43]
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[41]

In trigonometry English writers of the first half of the seventeenth century used contractions more freely than their
continental contemporaries; even more freely, indeed, than English writers of a later period. Von Braunmühl, the great
historian of trigonometry, gives Oughtred much praise for his trigonometry, and points out that half a century later the

army of writers on trigonometry had hardly yet reached the standard set by Oughtred’s analysis.
[44]

 Oughtred must be
credited also with the first complete proof that was given to the first two of “Napier’s analogies.” His trigonometry
contains seven-place tables of sines, tangents, and secants, and six-place tables of logarithmic sines and tangents; also
seven-place logarithmic tables of numbers. At the time of Oughtred there was some agitation in favor of a wider
introduction of decimal systems. This movement is reflected in those tables which contain the centesimal division of the
degree, a practice which is urged for general adoption in our own day, particularly by the French.

SOLUTION OF NUMERICAL EQUATIONS

In the solution of numerical equations Oughtred does not mention the sources from which he drew, but the method is
substantially that of the great French algebraist Vieta, as explained in a publication which appeared in 1600 in Paris
under the title, De numerosa potestatum purarum atque adfectarum ad exegesin resolutione tractatus. In view of

the fact that Vieta’s process has been described inaccurately by leading modern historians including H. Hankel
[45]

 and

M. Cantor,
[46]

 it may be worth while to go into some detail.
[47]

 By them it is made to appear as identical with the
procedure given later by Newton. The two are not the same. The difference lies in the divisor used. What is now called

“Newton’s method” is Newton’s method as modified by Joseph Raphson.
[48]

 The Newton-Raphson method of
approximation to the roots of an equation f(x)=0 is usually given the form a-[f(a)/f´(a)], where a is an approximate value
of the required root. It will be seen that the divisor is f´(a). Vieta’s divisor is different; it is

|f(a+s )-f(a)|-s ⁿ,

where f(x) is the left of the equation f(x)=k, n is the degree of equation, and s  is a unit of the denomination of the digit
next to be found. Thus in x³+420000x=247651713, it can be shown that 417 is approximately a root; suppose that a has
been taken to be 400, then s =10; but if, at the next step of approximation, a is taken to be 410, then s =1. In this example,
taking a=400, Vieta’s divisor would have been 9120000; Newton’s divisor would have been 900000.

A comparison of Vieta’s method with the Newton-Raphson method reveals the fact that Vieta’s divisor is more reliable,
but labors under the very great disadvantage of requiring a much larger amount of computation. The latter divisor is
accurate enough and easier to compute. Altogether the Newton-Raphson process marks a decided advance over that of
Vieta.

As already stated, it is the method of Vieta that Oughtred explains. The Englishman’s exposition is an improvement on
that of Vieta, printed forty years earlier. Nevertheless, Oughtred’s explanation is far from easy to follow. The theory of
equations was at that time still in its primitive stage of development. Algebraic notation was not sufficiently developed
to enable the argument to be condensed into a form easily surveyed. So complicated does Vieta’s process of
approximation appear that M. Cantor failed to recognize that Vieta possessed a uniform mode of procedure. But when
one has in mind the general expression for Vieta’s divisor which we gave above, one will recognize that there was
marked uniformity in Vieta’s approximations.

Oughtred allows himself twenty-eight sections in which to explain the process and at the close cannot forbear remarking
that 28 is a “perfect” number (being equal to the sum of its divisors, 1, 2, 4, 7, 14).

The early part of his exposition shows how an equation may be transformed so as to make its roots 10, 100, 1000, or

10
m

 times smaller. This simplifies the task of “locating a root”; that is, of finding between what integers the root lies.

Taking one of Oughtred’s equations, x -72x³+238600x=8725815, upon dividing 72x³ by 10, 238600x by 1000, and
8725815 by 10,000, we obtain x -7·2x³+238·6x=872·5. Dividing both sides by x, we obtain x³+238·6-
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7·2x²=x)872·5. Letting x=4, we have 64+238·6-115·2=187·4.

But 4)872·5(218·1; 4 is too small. Next let x=5, we have 125+238·6-180=183·6.

But 5)872·5(174·5; 5 is too large. We take the lesser value, x=4, or in the original equation, x=40. This method may be
used to find the second digit in the root. Oughtred divides both sides of the equation by x², and obtains x²+x)238600-
72x=x²)8725815. He tries x=47 and x=48, and finds that x=47.

He explains also how the last computation may be done by logarithms. Thereby he established for himself the record of
being the first to use logarithms in the solution of affected equations.

As an illustration of Oughtred’s method of approximation after the root sought has been located, we have chosen for
brevity a cubic in preference to a quartic. We selected the equation x³+420000x=247651713. By the process explained
above a root is found to lie between x=400 and x=500. From this point on, the approximation as given by Oughtred is as
shown on p. 43.

In further explanation of this process, observe that the given equation is of the form Lc+CqL=Dc, where Lc is our x,
Cq=420000, Dc=247651713. In the first step of approximation, let L=A+E, where A=400 and E is, as yet, undetermined.
We have

Lc=(A+E)³=A³+3A²E+3AE²+E³

and

CqL=420000(A+E).

Subtract from 247651713 the sum of the known terms A³ (his Ac) and 420000 A (his CqA). This sum is 232000000 the
remainder is 15651713.

“EXEMPLUM II

1c+420̣00̣0ḷ=247̇651̇71̣3̣ ̣̇

Hoc est, Lc+CqL=Dc

    2 4 7̇ | 6 5 1̇ | 7 ̣1 ̣3̣̇ | ( 4 1 7
    ------+-------+-------+------------
      4 2 | 0 0 0 | 0     | Cq
    ------+-------+-------+------------
      6 4 |       |       | Ac
    1 6 8 | 0 0 0 | 0     | Cq A
    ------+-------+-------+------------
    2 3 2 | 0 0 0 | 0     | Ablatit.
    ===================================
R     1 5 | 6 5 1̇ | 7 1 3 ̣|
    ------+-------+-------+------------
        4 | 8     |       | 3 Aq
          | 1 2   |       | 3 A
        4 | 2 0 0 | 0 0   | Cq
    ------+-------+-------+------------
        9 | 1 2 0 | 0 0   | Divisor.
    ------+-------+-------+------------
        4 | 8     |       | 3 Aq E
          | 1 2   |       | 3 A Eq
          |     1 |       | Ec
        4 | 2 0 0 | 0 0   | Cq E
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    ------+-------+-------+------------
        9 | 1 2 1 | 0 0   | Ablatit.
    ===================================
R       6 | 5 3 0 | 7 1 3̣̇ |                    4 | 1   |
    ------+-------+-------+------------      ----+-----+---
          | 5 0 4 | 3     | 3 Aq                 |     |
          |     1 | 2 3   | 3 A              1 6 | 8   |
          | 4 2 0 | 0 0 0 | Cq                   |   1 |
    ------+-------+-------+------------      ----+-----+---
          | 9 2 5 | 5 3 0 | Divisor.         1 6   8 1
    ------+-------+-------+------------
        3 | 5 3 0 | 1     | 3 Aq E
          |   6 0 | 2 7   | 3 A Eq
          |       | 3 4 3 | Ec
        2 | 9 4 0 | 0 0 0 | Cq E
    ------+-------+-------+------------
        6 | 5 3 0 | 7 1 3 | Ablatit.”

Next, he evaluates the coefficients of E in 3A²E and 420000E, also 3A, the coefficient of E². He obtains 3A²=480000,
3A=1200, Cq=420000. He interprets 3A² and Cq as tens, 3A as hundreds. Accordingly, he obtains as their sum
9120000, which is the divisor for finding the second digit in the approximation. Observe that this divisor is the value of
|f(a+s )-f(a)|-s ⁿ in our general expression, where a=400, s =10, n=3, f(x)=x³+420000x.

Dividing the remainder 15651713 by 9120000, he obtains the integer 1 in ten’s place; thus E=10, approximately. He
now computes the terms 3A²E, 3AE² and E³ to be, respectively, 4800000, 120000, 1000. Their sum is 9121000.
Subtracting it from the previous remainder, 15651713, leaves the new remainder, 6530713.

From here on each step is a repetition of the preceding step. The new A is 410, the new E is to be determined. We have
now in closer approximation, L=A+E. This time we do not subtract A³ and CqA, because this subtraction is already
affected by the preceding work.

We find the second trial divisor by computing the sum of 3A², 3A and Cq; that is, the sum of 504300, 1230, 420000,
which is 925530. Again, this divisor can be computed by our general expression for divisors, by taking a=410, s =1,
n=3.

Dividing 6530713 by 925530 yields the integer 7. Thus E=7. Computing 3A²E, 3AE², E³ and subtracting their sum, the
remainder is 0. Hence 417 is an exact root of the given equation.

Since the extraction of a cube root is merely the solution of a pure cubic equation, x³=n, the process given above may be
utilized in finding cube roots. This is precisely what Oughtred does in chap. xiv of his Clavis. If the foregoing
computation is modified by putting Cq=0, the process will yield the approximate cube root of 247651713.

Oughtred solves 16 examples by the process of approximation here explained. Of these, 9 are cubics, 5 are quartics, and
2 are quintics. In all cases he finds only one or two real roots. Of the roots sought, five are irrational, the remaining are
rational and are computed to their exact values. Three of the computed roots have 2 figures each, 9 roots have 3 figures
each, 4 roots have 4 figures each. While no attempt is made to secure all the roots—methods of computing complex roots
were invented much later—he computes roots of equations which involve large coefficients and some of them are of a
degree as high as the fifth. In view of the fact that many editions of the Clavis were issued, one impression as late as
1702, it contributed probably more than any other book to the popularization of Vieta’s method in England.

Before Oughtred, Thomas Harriot and William Milbourn are the only Englishmen known to have solved numerical
equations of higher degrees. Milbourn published nothing. Harriot slightly modified Vieta’s process by simplifying
somewhat the formation of the trial divisor. This method of approximation was the best in existence in Europe until the
publication by Wallis in 1685 of Newton’s method of approximation.

It should be stated that, before the time of Newton, the best method of approximation to the roots of numerical equations
existed, not in Europe, but in China. As early as the thirteenth century the Chinese possessed a method which is almost
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identical with what is known today as “Horner’s method.”

LOGARITHMS

Oughtred’s treatment of logarithms is quite in accordance with the more recent practice.
[49]

 He explains the finding of the
“index” (our “characteristic”); he states that “the sum of two Logarithms is the Logarithm of the Product of their Valors;
and their difference is the Logarithm of the Quotient,” that “the Logarithm of the side [436] drawn upon the Index number
[2] of dimensions of any Potestas is the logarithm of the same Potestas” [436²], that “the logarithm of any Potestas [436²]
divided by the number of its dimensions [2] affordeth the Logarithm of its Root [436].” These statements of Oughtred
occur for the first time in the Key of the Mathematicks of 1647; the Clavis of 1631 contains no treatment of logarithms.

If the characteristic of a logarithm is negative, Oughtred indicates this fact by placing the - above the characteristic. He
separates the characteristic and mantissa by a comma, but still uses the sign |_ to indicate decimal fractions. He uses the
contraction “log.”

INVENTION OF THE SLIDE RULE; CONTROVERSY ON PRIORITY OF INVENTION

Oughtred’s most original line of scientific activity is the one least known to the present generation. Augustus De Morgan,
in speaking of Oughtred, who was sometimes called “Oughtred Aetonensis,” remarks: “He is an animal of extinct race,
an Eton mathematician. Few Eton men, even of the minority which knows what a sliding rule is, are aware that the

inventor was of their own school and college.”
[50]

 The invention of the slide rule has, until recently,
[51]

 been a matter
of dispute; it has been erroneously ascribed to Edmund Gunter, Edmund Wingate, Seth Partridge, and others. We have
been able to establish that William Oughtred was the first inventor of slide rules, though not the first to publish thereon.
We shall see that Oughtred invented slide rules about 1622, but the descriptions of his instruments were not put into print
before 1632 and 1633. Meanwhile one of his own pupils, Richard Delamain, who probably invented the circular slide
rule independently, published a description in 1630, at London, in a pamphlet of 32 pages entitled Grammelogia; or the
Mathematicall Ring. In editions of this pamphlet which appeared during the following three or four years, various parts
were added on, and some parts of the first and second editions eliminated. Thus Delamain antedates Oughtred two years
in the publication of a description of a circular slide rule. But Oughtred had invented also a rectilinear slide rule, a
description of which appeared in 1633. To the invention of this Oughtred has a clear title. A bitter controversy sprang up
between Delamain on one hand, and Oughtred and some of his pupils on the other, on the priority and independence of
invention of the circular slide rule. Few inventors and scientific men are so fortunate as to escape contests. The reader
needs only to recall the disputes which have arisen, involving the researches of Sir Isaac Newton and Leibniz on the
differential and integral calculus, of Thomas Harriot and René Descartes relating to the theory of equations, of Robert
Mayer, Hermann von Helmholtz, and Joule on the principle of the conservation of energy, or of Robert Morse,
Joseph Henry, Gauss and Weber, and others on the telegraph, to see that questions of priority and independence are
not uncommon. The controversy between Oughtred and Delamain embittered Oughtred’s life for many years. He refers to
it in print on more than one occasion. We shall confine ourselves at present to the statement that it is by no means clear
that Delamain stole the invention from Oughtred; Delamain was probably an independent inventor. Moreover, it is highly
probable that the controversy would never have arisen, had not some of Oughtred’s pupils urged and forced him into it.
William Forster stated in the preface to the Circles of Proportion of 1632 that while he had been carefully preparing the
manuscript for the press, “another to whom the Author [Oughtred] in a louing confidence discouered this intent, using
more hast then good speed, went about to preocupate.” It was this passage which started the conflagration. Another
pupil, W. Robinson, wrote to Oughtred, when the latter was preparing his Apologeticall Epistle as a reply to Delamain’s
countercharges: “Good sir, let me be beholden to you for your Apology whensoever it comes forth, and (if I speak not
too late) let me entreat you, whip ignorance well on the blind side, and we may turn him round, and see what part of him

is free.”
[52]

 As stated previously, Oughtred’s circular slide rule was described by him in his Circles of Proportion,
London, 1632, which was translated from Oughtred’s Latin manuscript and then seen through the press by his pupil,
William Forster. In 1633 appeared An Addition vnto the Vse of the Instrvment called the Circles of Proportion
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which contained at the end “The Declaration of the two Rulers for Calculation,” giving a description of Oughtred’s
rectilinear slide rule. This Addition was bound with the Circles of Proportion as one volume. About the same time

Oughtred described a modified form of the rectilinear slide rule, to be used in London for gauging.
[53]
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CHAPTER III 
MINOR WORKS

Among the minor works of Oughtred must be ranked his booklet of forty pages to which reference has already been
made, entitled, The New Artificial Gauging Line or Rod, London, 1633. His different designs of slide rules and his
inventions of sun-dials as well as his exposition of the making of watches show that he displayed unusual interest and
talent in the various mathematical instruments. A short tract on watchmaking was brought out in London as an appendix
to the Horological Dialogues of a clock- and watchmaker who signed himself “J. S.” (John Smith?). Oughtred’s tract
appeared with its own title-page, but with pagination continued from the preceding part, as An Appendix wherein is
contained a Method of Calculating all Numbers for Watches. Written originally by that famous Mathematician Mr.
William Oughtred, and now made Publick. By J. S. of London, Clock-maker. London, 1675.

“J. S.” says in his preface:

The method following was many years since Compiled by Mr. Oughtred for the use of some Ingenious Gentlemen his
friends, who for recreation at the University, studied to find out the reason and Knowledge of Watch-work, which
seemed also to be a thing with which Mr. Oughtred himself was much affected, as may in part appear by his putting
out of his own Son to the same Trade, for whose use (as I am informed) he did compile a larger tract, but what
became of it cannot be known.

Notwithstanding Oughtred’s marked activity in the design of mathematical instruments, and his use of surveying
instruments, he always spoke in deprecating terms of their importance and their educational value. In his epistle
against Delamain he says:

The Instruments I doe not value or weigh one single penny. If I had been ambitious of praise, or had thought them (or
better then they) worthy, at which to have taken my rise, out of my secure and quiet obscuritie, to mount up into glory,
and the knowledge of men: I could have done it many yeares before. . . . .

Long agoe, when I was a young student of the Mathematicall Sciences, I tryed many wayes and devices to fit my selve
with some good Diall or Instrument portable for my pocket, to finde the houre, and try other conclusions by, and
accordingly framed for that my purpose both Quadrants, and Rings, and Cylinders, and many other composures. Yet
not to my full content and satisfaction; for either they performed but little, or els were patched up with a diversity of
lines by an unnaturall and forced contexture. At last I . . . . found what I had before with much studie and paines in

vaine sought for.
[54]

Mention has been made in the previous pages of two of his papers on sun-dials, prepared (as he says) when he was in
his twenty-third year. The first was published in the Clavis of 1647. The second paper appeared in his Circles of
Proportion.

Both before and after the time of Oughtred much was written on sun-dials. Such instruments were set up against the walls
of prominent buildings, much as the faces of clocks in our time. The inscriptions that were put upon sun-dials are often
very clever: “I count only the hours of sunshine,” “Alas, how fleeting.” A sun-dial on the grounds of Merchiston
Castle, in Edinburgh, where the inventor of logarithms, John Napier, lived for many years, bears the inscription,
“Ere time be tint, tak tent of time” (Ere time be lost, take heed of time).

Portable sun-dials were sometimes carried in pockets, as we carry watches. Thus Shakespeare, in As You Like It, Act II,
sc. vii:

“And then he drew a diall from his poke.”

Watches were first made for carrying in the pocket about 1658.
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Because of this literary, scientific, and practical interest in methods of indicating time it is not surprising that Oughtred
devoted himself to the mastery and the advancement of methods of time-measurement.

Besides the accounts previously noted, there came from his pen: The Description and Use of the double Horizontall
Dyall: Whereby not onely the hower of the day is shewne; but also the Meridian Line is found: And most
Astronomical Questions, which may be done by the Globe, are resolved. Invented and written by W. O., London, 1636.

The “Horizontall Dyall” and “Horologicall Ring” appeared again as appendixes to Oughtred’s translation from the
French of a book on mathematical recreations.

The fourth French edition of that work appeared in 1627 at Paris, under the title of Recreations mathematiqve, written
by “Henry van Etten,” a pseudonym for the French Jesuit Jean Leurechon (1591-1690). English editions appeared in
1633, 1653, and 1674. The full title of the 1653 edition conveys an idea of the contents of the text: Mathematical
Recreations, or, A Collection of many Problemes, extracted out of the Ancient and Modern Philosophers, as
Secrets and Experiments in Arithmetick, Geometry, Cosmographie, Horologiographie, Astronomie, Navigation,
Musick, Opticks, Architecture, Statick, Mechanicks, Chemistry, Water-works, Fire-works, &c. Not vulgarly manifest
till now. Written first in Greek and Latin, lately compil’d in French, by Henry Van Etten, and now in English, with
the Examinations and Augmentations of divers Modern Mathematicians. Whereunto is added the Description and
Use of the Generall Horologicall Ring. And The Double Horizontall Diall. Invented and written by William
Oughtred. London, Printed for William Leake, at the Signe of the Crown in Fleet-street, between the two Temple-
Gates. MDCLIII.

The graphic solution of spherical triangles by the accurate drawing of the triangles on a sphere and the measurement of
the unknown parts in the drawing was explained by Oughtred in a short tract which was published by his son-in-law,
Christopher Brookes, under the following title: The Solution of all Sphaerical Triangles both right and oblique By the
Planisphaere: Whereby two of the Sphaerical partes sought, are at one position most easily found out. Published
with consent of the Author, By Christopher Brookes, Mathematique Instrument-maker, and Manciple of Wadham
Colledge, in Oxford.

Brookes says in the preface:

I have oftentimes seen my Reverend friend Mr. W. O. in his resolution of all sphaericall triangles both right and
oblique, to use a planisphaere, without the tedious labour of Trigonometry by the ordinary Canons: which
planisphaere he had delineated with his own hands, and used in his calculations more than Forty years before.

Interesting as one of our sources from which Oughtred obtained his knowledge of the conic sections is his study of
Mydorge. A tract which he wrote thereon was published by Jonas Moore, in his Arithmetick in two books . . . .
[containing also] the two first books of Mydorgius his conical sections analyzed by that reverend devine Mr. W.
Oughtred, Englished and completed with cuts. London, 1660. Another edition bears the date 1688.

To be noted among the minor works of Oughtred are his posthumous papers. He left a considerable number of
mathematical papers which his friend Sir Charles Scarborough had revised under his direction and published at Oxford
in 1676 in one volume under the title, Gulielmi Oughtredi, Etonensis, quondam Collegii Regalis in Cantabrigia Socii,
Opuscula Mathematica hactenus inedita. Its nine tracts are of little interest to a modern reader.

Here we wish to give our reasons for our belief that Oughtred is the author of an anonymous tract on the use of
logarithms and on a method of logarithmic interpolation which, as previously noted, appeared as an “Appendix” to
Edward Wright’s translation into English of John Napier’s Descriptio, under the title, A Description of the Admirable
Table of Logarithmes, London, 1618. The “Appendix” bears the title, “An Appendix to the Logarithmes, showing the
practise of the Calculation of Triangles, and also a new and ready way for the exact finding out of such lines and
Logarithmes as are not precisely to be found in the Canons.” It is an able tract. A natural guess is that the editor of the
book, Samuel Wright, a son of Edward Wright, composed this “Appendix.” More probable is the conjecture which (Dr.
J. W. L. Glaisher informs me) was made by Augustus De Morgan, attributing the authorship to Oughtred. Two reasons in
support of this are advanced by Dr. Glaisher, the use of x in the “Appendix” as the sign of multiplication (to
Oughtred is generally attributed the introduction of the cross × for multiplication in 1631), and the then unusual
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designation “cathetus” for the vertical leg of a right triangle, a term appearing in Oughtred’s books. We are able to
advance a third argument, namely, the occurrence in the “Appendix” of (S*) as the notation for sine complement (cosine),
while Seth Ward, an early pupil of Oughtred, in his Idea trigonometriae demonstratae, Oxford, 1654, used a similar
notation (S’). It has been stated elsewhere that Oughtred claimed Seth Ward’s exposition of trigonometry as virtually his
own. Attention should be called also to the fact that, in his Trigonometria, p. 2, Oughtred uses (’) to designate 180°-
angle.

Dr. J. W. L. Glaisher is the first to call attention to other points of interest in this “Appendix.” The interpolations are
effected with the aid of a small table containing the logarithms of 72 sines. Except for the omission of the decimal point,
these logarithms are natural logarithms—the first of their kind ever published. In this table we find log 10=2302584; in
modern notation, this is stated, loge 10=2.302584. The first more extended table of natural logarithms of numbers was
published by John Speidell in the 1622 impression of his New Logarithmes, which contains, besides trigonometric
tables, the logarithms of the numbers 1-1000.

The “Appendix” contains also the first account of a method of computing logarithms, called the “radix method,” which is
usually attributed to Briggs who applied it in his Arithmetica logarithmica, 1624. In general, this method consists in
multiplying or dividing a number, whose logarithm is sought, by a suitable factor and resolving the result into factors of
the form 1±x/10ⁿ. The logarithm of the number is then obtained by adding the previously calculated logarithms of the
factors. The method has been repeatedly rediscovered, by Flower in 1771, Atwood in 1786, Leonelli in 1802,
Manning in 1806, Weddle in 1845, Hearn in 1847, and Orchard in 1848.

We conclude with the words of Dr. J. W. L. Glaisher:

The Appendix was an interesting and remarkable contribution to mathematics, for in its sixteen small pages it contains
(1) the first use of the sign ×; (2) the first abbreviations, or symbols, for the sine, tangent, cosine, and cotangent; (3)

the invention of the radix method of calculating logarithms; (4) the first table of hyperbolic logarithms.
[55]
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CHAPTER IV 
OUGHTRED’S INFLUENCE UPON MATHEMATICAL PROGRESS AND

TEACHING

OUGHTRED AND HARRIOT

Oughtred’s Clavis mathematicae was the most influential mathematical publication in Great Britain which appeared in
the interval between John Napier’s Mirifici logarithmorum canonis descriptio, Edinburgh, 1614, and the time, forty
years later, when John Wallis began to publish his important researches at Oxford. The year 1631 is of interest as the
date of publication, not only of Oughtred’s Clavis, but also of Thomas Harriot’s Artis analyticae praxis. We have no
evidence that these two mathematicians ever met. Through their writings they did not influence each other. Harriot died
ten years before the appearance of his magnum opus, or ten years before the publication of Oughtred’s Clavis. Strangely,
Oughtred, who survived Harriot thirty-nine years, never mentions him. There is no doubt that, of the two, Harriot was the
more original mind, more capable of penetrating into new fields of research. But he had the misfortune of having a strong
competitor in René Descartes in the development of algebra, so that no single algebraic achievement stands out strongly
and conspicuously as Harriot’s own contribution to algebraic science. As a text to serve as an introduction to algebra,
Harriot’s Artis analyticae praxis was inferior to Oughtred’s Clavis. The former was a much larger book, not as
conveniently portable, compiled after the author’s death by others, and not prepared with the care in the
development of the details, nor with the coherence and unity and the profound pedagogic insight which distinguish
the work of Oughtred. Nor was Harriot’s position in life such as to be surrounded by so wide a circle of pupils as was
Oughtred. To be sure, Harriot had such followers as Torporley, William Lower, and Protheroe in Wales, but this group
is small as compared with Oughtred’s.

OUGHTRED’S PUPILS

There was a large number of distinguished men who, in their youth, either visited Oughtred’s home and studied under his
roof or else read his Clavis and sought his assistance by correspondence. We permit Aubrey to enumerate some of these
pupils in his own gossipy style:

Seth Ward, M.A., a fellow of Sydney Colledge in Cambridge (now bishop of Sarum), came to him, and lived with him
halfe a yeare (and he would not take a farthing for his diet), and learned all his mathematiques of him. Sir Jonas More
was with him a good while, and learn’t; he was but an ordinary logist before. Sir Charles Scarborough was his
scholar; so Dr. John Wallis was his scholar; so was Christopher Wren his scholar, so was Mr. . . . . Smethwyck,
Regiae Societatis Socius. One Mr. Austin (a most ingeniose man) was his scholar, and studyed so much that he
became mad, fell a laughing, and so dyed, to the great griefe of the old gentleman. Mr. . . . . Stokes, another scholar,
fell mad, and dream’t that the good old gentleman came to him, and gave him good advice, and so he recovered, and is
still well. Mr. Thomas Henshawe, Regiae Societatis Socius, was his scholar (then a young gentleman). But he did not
so much like any as those that tugged and tooke paines to worke out questions. He taught all free.

He could not endure to see a scholar write an ill hand; he taught them all presently to mend their hands.
[56]

Had Oughtred been the means of guiding the mathematical studies of only John Wallis and Christopher Wren—one the
greatest English mathematician between Napier and Newton, the other one of the greatest architects of England—he
would have earned profound gratitude. But the foregoing list embraces nine men, most of them distinguished in their day.
And yet Aubrey’s list is very incomplete. It is easy to more than double it by adding the names of William Forster, who
translated from Latin into English Oughtred’s Circles of Proportion; Arthur Haughton, who brought out the 1660 Oxford
edition of the Circles of Proportion; Robert Wood, an educator and politician, who assisted Oughtred in the translation
of the Clavis from Latin into English for the edition of 1647; W. Gascoigne, a man of promise, who fell in 1644 at
Marston Moor; John Twysden, who was active as a publisher; William Sudell, N. Ewart, Richard Shuttleworth, William



[60]

[61]

Robinson, and William Howard, the son of the Earl of Arundel, for whose instruction Oughtred originally prepared the
manuscript treatise that was published in 1631 as the Clavis mathematicae.

Nor must we overlook the names of Lawrence Rooke (who “did admirably well read in Gresham Coll. on the sixth
chapt. of the said book,” the Clavis); Christopher Brookes (a maker of mathematical instruments who married a daughter
of the famous mathematician); William Leech and William Brearly (who with Robert Wood “have been ready and
helpfull incouragers of me [Oughtred] in this labour” of preparing the English Clavis of 1647), and Thomas
Wharton, who studied the Clavis and assisted in the editing of the edition of 1647.

The devotion of these pupils offers eloquent testimony, not only of Oughtred’s ability as a mathematician, but also of his
power of drawing young men to him—of his personal magnetism. Nor should we omit from the list Richard Delamain, a
teacher of mathematics in London, who unfortunately had a bitter controversy with Oughtred on the priority and
independence of the invention of the circular slide rule and a form of sun-dial. Delamain became later a tutor in
mathematics to King Charles I, and perished in the civil war, before 1645.

OUGHTRED, THE “TODHUNTER OF THE SEVENTEENTH

To afford a clearer view of Oughtred as a teacher and mathematical expositor we quote some passages from various

writers and from his correspondence. Anthony Wood
[57]

 gives an interesting account of how Seth Ward and Charles
Scarborough went from Cambridge University to the obscure home of the country mathematician to be initiated into the
mysteries of algebra:

Mr. Cha. Scarborough, then an ingenious young student and fellow of Caius Coll. in the same university, was his [Seth
Ward’s] great acquaintance, and both being equally students in that faculty and desirous to perfect themselves, they
took a journey to Mr. Will. Oughtred living then at Albury in Surrey, to be informed in many things in his Clavis
mathematica which seemed at that time very obscure to them. Mr. Oughtred treated them with great humanity, being
very much pleased to see such ingenious young men apply themselves to these studies, and in short time he sent them
away well satisfied in their desires. When they returned to Cambridge, they afterwards read the Clav. Math. to
their pupils, which was the first time that book was read in the said university. Mr. Laur. Rook, a disciple of
Oughtred, I think, and Mr. Ward’s friend, did admirably well read in Gresham Coll. on the sixth chap. of the said
book, which obtained him great repute from some and greater from Mr. Ward, who ever after had an especial favour
for him.

Anthony Wood makes a similar statement about Thomas Henshaw:

While he remained in that coll. [University College, Oxford] which was five years . . . . he made an excursion for
about 9 months to the famous mathematician Will. Oughtred parson of Aldbury in Surrey, by whom he was initiated in
the study of mathematics, and afterwards retiring to his coll. for a time, he at length went to London, was entered a

student in the Middle Temple.
[58]

Extracts from letters of W. Gascoigne to Oughtred, of the years 1640 and 1641, throw some light upon mathematical
teaching of the time:

Amongst the mathematical rarities these times have afforded, there are none of that small number I (a late intruder into
these studies) have yet viewed, which so fully demonstrates their authors’ great abilities as your Clavis, not richer in
augmentations, than valuable for contraction; . . . .

Your belief that there is in all inventions aliquid divinum, an infusion beyond human cogitations, I am confident will
appear notably strengthened, if you please to afford this truth belief, that I entered upon these studies accidentally after
I betook myself to the country, having never had so much aid as to be taught addition, nor the discourse of an artist
(having left both Oxford and London before I knew what any proposition in geometry meant) to inform me what were

the best authors.
[59]



[63]

[64]

[62]
The following extracts from two letters by W. Robinson, written before the appearance of the 1647 English edition of the
Clavis, express the feeling of many readers of the Clavis on its extreme conciseness and brevity of explanation:

I shall long exceedingly till I see your Clavis turned into a pick-lock; and I beseech you enlarge it, and explain it what
you can, for we shall not need to fear either tautology or superfluity; you are naturally concise, and your clear
judgment makes you both methodical and pithy; and your analytical way is indeed the only way. . . . .

I will once again earnestly entreat you, that you be rather diffuse in the setting forth of your English mathematical
Clavis, than concise, considering that the wisest of men noted of old, and said stultorum infinitus est numerus, these
arts cannot be made too easy, they are so abstruse of themselves, and men either so lazy or dull, that their fastidious
wits take a loathing at the very entrance of these studies, unless it be sweetened on with plainness and facility. Brevity
may well argue a learned author, that without any excess or redundance, either of matter or words, can give the very
substance and essence of the thing treated of; but it seldom makes a learned scholar; and if one be capable, twenty are
not; and if the master sum up in brief the pith of his own long labours and travails, it is not easy to imagine that

scholars can with less labour than it cost their masters dive into the depths thereof.
[60]

Here is the judgment of another of Oughtred’s friends:

. . . . with the character I received from your and my noble friend Sir Charles Cavendish, then at Paris, of your second
edition of the same piece, made me at my return into England speedily to get, and diligently peruse the same. Neither
truly did I find my expectation deceived; having with admiration often considered how it was possible (even in the
hardest things of geometry) to deliver so much matter in so few words, yet with such demonstrative clearness and
perspicuity: and hath often put me in mind of learned Mersennus his judgment (since dead) of it, that there was

more matter comprehended in that little book than in Diophantus, and all the ancients. . . . .
[61]

Oughtred’s own feeling was against diffuseness in textbook writing. In his revisions of his Clavis the original character
of that book was not altered. In his reply to W. Robinson, Oughtred said:

. . . . But my art for all such mathematical inventions I have set down in my Clavis Mathematica, which therefore in my
title I say is tum logisticae cum analyticae adeoque totius mathematicae quasi clavis, which if any one of a
mathematical genius will carefully study, (and indeed it must be carefully studied,) he will not admire others, but
himself do wonders. But I (such is my tenuity) have enough fungi vice cotis, acutum reddere quae ferrum valet, exsors
ipsa secandi, or like the touchstone, which being but a stone, base and little worth, can shew the excellence and riches

of gold.
[62]

John Wallis held Oughtred’s Clavis in high regard. When in correspondence with John Collins concerning plans for a
new edition, Wallis wrote in 1666-67, six years after the death of Oughtred:

. . . . But for the goodness of the book in itself, it is that (I confess) which I look upon as a very good book, and which
doth in as little room deliver as much of the fundamental and useful part of geometry (as well as of arithmetic and
algebra) as any book I know; and why it should not be now acceptable I do not see. It is true, that as in other things so
in mathematics, fashions will daily alter, and that which Mr. Oughtred designed by great letters may be now by others
be designed by small; but a mathematician will, with the same ease and advantage, understand Ac, and a³ or aaa. . . . .
And the like I judge of Mr. Oughtred’s Clavis, which I look upon (as those pieces of Vieta who first went in that
way) as lasting books and classic authors in this kind; to which, notwithstanding, every day may make new
additions. . . . .

But I confess, as to my own judgment, I am not for making the book bigger, because it is contrary to the design of it,
being intended for a manual or contract; whereas comments, by enlarging it, do rather destroy it. . . . . But it was by

him intended, in a small epitome, to give the substance of what is by others delivered in larger volumes. . . . .
[63]

That there continued to be a group of students and teachers who desired a fuller exposition than is given by Oughtred is
evident from the appearance, over fifty years after the first publication of the Clavis, of a booklet by Gilbert Clark,



[65]

[66]

[67]

entitled Oughtredus Explicatus, London, 1682. A review of this appeared in the Acta Eruditorum (Leipzig, 1684), on p.
168, wherein Oughtred is named “clarissimus Angliae mathematicus.” John Collins wrote Wallis in 1666-67 that Clark,
“who lives with Sir Justinian Isham, within seven miles of Northampton, . . . . intimates he wrote a comment on the

Clavis, which lay long in the hands of a printer, by whom he was abused, meaning Leybourne.”
[64]

We shall have occasion below to refer to Oughtred’s inability to secure a copy of a noted Italian mathematical work
published a few years before. In those days the condition of the book trade in England must have been somewhat

extraordinary. Dr. J. W. L. Glaisher throws some light upon this subject.
[65]

 He found in the Calendar of State
Papers, Domestic Series, 1637, a petition to Archbishop Laud in which it is set forth that when Hooganhuysen, a
Dutchman, “heretofore complained of in the High Commission for importing books printed beyond the seas,” had been
bound “not to bring in any more,” one Vlacq (the computer and publisher of logarithmic tables) “kept up the same agency
and sold books in his stead. . . . . Vlacq is now preparing to go beyond the seas to avoid answering his late bringing over
nine bales of books contrary to the decree of the Star Chamber.” Judgment was passed that, “Considering the ill-
consequence and scandal that would arise by strangers importing and venting in this kingdom books printed beyond the
seas,” certain importations be prohibited, and seized if brought over.

This want of easy intercommunication of results of scientific research in Oughtred’s time is revealed in the following
letter, written by Oughtred to Robert Keylway, in 1645:

I speak this the rather, and am induced to a better confidence of your performance, by reason of a geometric-analytical
art or practice found out by one Cavalieri, an Italian, of which about three years since I received information by a
letter from Paris, wherein was praelibated only a small taste thereof, yet so that I divine great enlargement of the
bounds of the mathematical empire will ensue. I was then very desirous to see the author’s own book while my spirits
were more free and lightsome, but I could not get it in France. Since, being more stept into years, daunted and broken
with the sufferings of these disastrous times, I must content myself to keep home, and not put out to any foreign

discoveries.
[66]

It was in 1655, when Oughtred was about eighty years old, that John Wallis, the great forerunner of Newton in Great
Britain, began to publish his great researches on the arithmetic of infinites. Oughtred rejoiced over the achievements
of his former pupil. In 1655, Oughtred wrote John Wallis as follows:

I have with unspeakable delight, so far as my necessary businesses, the infirmness of my health, and the greatness of
my age (approaching now to an end) would permit, perused your most learned papers, of several choice arguments,
which you sent me: wherein I do first with thankfulness acknowledge to God, the Father of lights, the great light he
hath given you; and next I congratulate you, even with admiration, the clearness and perspicacity of your understanding
and genius, who have not only gone, but also opened a way into these profoundest mysteries of art, unknown and not
thought of by the ancients. With which your mysterious inventions I am the more affected, because full twenty years
ago, the learned patron of learning, Sir Charles Cavendish, shewed me a paper written, wherein were some few
excellent new theorems, wrought by the way, as I suppose, of Cavalieri, which I wrought over again more agreeably
to my way. The paper, wherein I wrought it, I shewed to many, whereof some took copies, but my own I cannot find. I
mention it for this, because I saw therein a light breaking out for the discovery of wonders to be revealed to mankind,
in this last age of the world: which light I did salute as afar off, and now at a nearer distance embrace in your
prosperous beginnings. Sir, that you are pleased to mention my name in your never dying papers, that is your noble

favour to me, who can add nothing to your glory, but only my applause. . . . .
[67]

The last sentence has reference to Wallis’ appreciative and eulogistic reference to Oughtred in the preface. It is of
interest to secure the opinion of later English writers who knew Oughtred only through his books. John Locke wrote

in his journal under the date, June 24, 1681, “the best algebra yet extant is Outred’s.”
[68]

 John Collins, who is known
in the history of mathematics chiefly through his very extensive correspondence with nearly all mathematicians of his
day, was inclined to be more critical. He wrote Wallis about 1667:

It was not my intent to disparage the author, though I know many that did lightly esteem him when living, some



[68]

[69]

whereof are at rest, as Mr. Foster and Mr. Gibson. . . . . You grant the author is brief, and therefore obscure, and I say
it is but a collection, which, if himself knew, he had done well to have quoted his authors, whereto the reader might
have repaired. You do not like those words of Vieta in his theorems, ex adjunctione plano solidi, plus quadrato
quadrati, etc., and think Mr. Oughtred the first that abridged those expressions by symbols; but I dissent, and tell you

’twas done before by Cataldus, Geysius, and Camillus Gloriosus,
[69]

 who in his first decade of exercises, (not the first
tract,) printed at Naples in 1627, which was four years before the first edition of the Clavis, proposeth this equation
just as I here give it you, viz. 1ccc+16qcc+41qqc-2304cc-18364qc-133000qq-54505c+3728q+8064 N aequatur
4608, finds N or a root of it to be 24, and composeth the whole out of it for proof, just in Mr. Oughtred’s symbols and
method. Cataldus on Vieta came out fifteen years before, and I cannot quote that, as not having it by me.

. . . . And as for Mr. Oughtred’s method of symbols, this I say to it; it may be proper for you as a commentator to
follow it, but divers I know, men of inferior rank that have good skill in algebra, that neither use nor approve it. . . . .
Is not A  sooner wrote than Aqc? Let A be 2, the cube of 2 is 8, which squared is 64: one of the questions between
Maghet Grisio and Gloriosus is whether 64=Acc or Aqc. The Cartesian method tells you it is A , and decides the

doubt. . . . .
[70]

There is some ground for the criticisms passed by Collins. To be sure, the first edition of the Clavis is dated 1631—six
years before Descartes suggested the exponential notation which came to be adopted as the symbolism in our modern
algebra. But the second edition of the Clavis, 1647, appeared ten years after Descartes’ innovation. Had Oughtred seen
fit to adopt the new exponential notation in 1647, the step would have been epoch-making in the teaching of algebra in
England. We have seen no indication that Oughtred was familiar with Descartes’ Géométrie of 1637.

The year preceding Oughtred’s death Mr. John Twysden expressed himself as follows in the preface to his Miscellanies:

It remains that I should adde something touching the beginning, and use of these Sciences. . . . . I shall only, to their
honours, name some of our own Nation yet living, who have happily laboured upon both stages. That succeeding ages
may understand that in this of ours, there yet remained some who were neither ignorant of these Arts, as if they had
held them vain, nor condemn them as superfluous. Amongst them all let Mr. William Oughtred, of Aeton, be named in
the first place, a Person of venerable grey haires, and exemplary piety, who indeed exceeds all praise we can bestow
upon him. Who by an easie method, and admirable Key, hath unlocked the hidden things of geometry. Who by an
accurate Trigonometry and furniture of Instruments, hath inriched, as well geometry, as Astronomy. Let D. John
Wallis, and D. Seth Ward, succeed in the next place, both famous Persons, and Doctors in Divinity, the one of

geometry, the other of astronomy, Savilian Professors in the University of Oxford.
[71]

The astronomer Edmund Halley, in his preface to the 1694 English edition of the Clavis, speaks of this book as one of
“so established a reputation, that it were needless to say anything thereof,” though “the concise Brevity of the author is
such, as in many places to need Explication, to render it Intelligible to the less knowing Mathematical matters.”

In closing this part of our monograph, we quote the testimony of Robert Boyle, the experimental physicist, as given May
8, 1647, in a letter to Mr. Hartlib:

The Englishing of, and additions to Oughtred’s Clavis mathematica does much content me, I having formerly spent
much study on the original of that algebra, which I have long since esteemed a much more instructive way of logic,

than that of Aristotle.
[72]

WAS DESCARTES INDEBTED TO OUGHTRED?

This question first arose in the seventeenth century, when John Wallis, of Oxford, in his Algebra (the English edition of
1685, and more particularly the Latin edition of 1693), raised the issue of Descartes’ indebtedness to the English
scientists, Thomas Harriot and William Oughtred. In discussing matters of priority between Harriot and Descartes,
relating to the theory of equations, Wallis is generally held to have shown marked partiality to Harriot. Less attention has
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[71]

[72]

been given by historians of mathematics to Descartes’ indebtedness to Oughtred. Yet this question is of importance
in tracing Oughtred’s influence upon his time.

On January 8, 1688-89, Samuel Morland addressed a letter of inquiry to John Wallis, containing a passage which we
translate from the Latin:

Some time ago I read in the elegant and truly precious book that you have written on Algebra, about Descartes, this
philosopher so extolled above all for having arrived at a very perfect system by his own powers, without the aid of
others, this Descartes, I say, who has received in geometry very great light from our Oughtred and our Harriot, and has
followed their track though he carefully suppressed their names. I stated this in a conversation with a professor in
Utrecht (where I reside at present). He requested me to indicate to him the page-numbers in the two authors which
justified this accusation. I admitted that I could not do so. The Géométrie of Descartes is not sufficiently familiar to
me, although with Oughtred I am fairly familiar. I pray you therefore that you will assume this burden. Give me at least
those references to passages of the two authors from the comparison of which the plagiarism by Descartes is the most

striking.
[73]

Following Morland’s letter in the De algebra tractatus, is printed Wallis’ reply, dated March 12, 1688 (“Stilo
Angliae”), which is, in part, as follows:

I nowhere give him the name of a plagiarist; I would not appear so impolite. However this I say, the major part of his
algebra (if not all) is found before him in other authors (notably in our Harriot) whom he does not designate by name.
That algebra may be applied to geometry, and that it is in fact so applied, is nothing new. Passing the ancients in
silence, we state that this has been done by Vieta, Ghetaldi, Oughtred and others, before Descartes. They have
resolved by algebra and specious arithmetic [literal arithmetic] many geometrical problems. . . . . But the question
is not as to application of algebra to geometry (a thing quite old), but of the Cartesian algebra considered by itself.

Wallis then indicates in the 1659 edition of Descartes’ Géométrie where the subjects treated on the first six pages are
found in the writings of earlier algebraists, particularly of Harriot and Oughtred. For example, what is found on the first
page of Descartes, relating to addition, subtraction, multiplication, division, and root extraction, is declared by Wallis to
be drawn from Vieta, Ghetaldi, and Oughtred.

It is true that Descartes makes no mention of modern writers, except once of Cardan. But it was not the purpose of
Descartes to write a history of algebra. To be sure, references to such of his immediate predecessors as he had read
would not have been out of place. Nevertheless, Wallis fails to show that Descartes made illegitimate use of anything he
may have seen in Harriot or Oughtred.

The first inquiry to be made is, Did Descartes possess copies of the books of Harriot and Oughtred? It is only in recent
time that this question has been answered as to Harriot. As to Oughtred, it is still unanswered. It is now known that
Descartes had seen Harriot’s Artis analyticae praxis (1631). Descartes wrote a letter to Constantin Huygens in which he

states that he is sending Harriot’s book.
[74]

An able discussion of the question, what effect, if any, Oughtred’s Clavis mathematicae of 1631 had upon

Descartes’
[75]

 Géométrie of 1637, is given by H. Bosmans in a recent article. According to Bosmans no evidence
has been found that Descartes possessed a copy of Oughtred’s book, or that he had examined it. Bosmans believes
nevertheless that Descartes was influenced by the Clavis, either directly or indirectly. He says:

If Descartes did not read it carefully, which is not proved, he was none the less well informed with regard to it. No
one denies his intimate knowledge of the intellectual movement of his time. The Clavis mathematica enjoyed a rapid
success. It is impossible that, at least indirectly, he did not know the more original ideas which it contained. Far from

belittling Descartes, as I much desire to repeat, this rather makes him the greater.
[76]

We ourselves would hardly go as far as does Bosmans. Unless Descartes actually examined a copy of Oughtred it is not
likely that he was influenced by Oughtred in appreciable degree. Book reviews were quite unknown in those days. No
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[74]

[75]

[76]

evidence has yet been adduced to show that Descartes obtained a knowledge of Oughtred by correspondence. A most
striking feature about Oughtred’s Clavis is its notation. No trace of the Englishman’s symbolism has been pointed out in
Descartes’ Géométrie of 1637. Only six years intervened between the publication of the Clavis and the Géométrie. It
took longer than this period for the Clavis to show evidence of its influence upon mathematical books published in
England; it is not probable that abroad the contact was more immediate than at home. Our study of seventeenth-
century algebra has led us to the conviction that Oughtred deserves a higher place in the development of this science
than is usually accorded to him; but that it took several decennia for his influence fully to develop.

THE SPREAD OF OUGHTRED’S NOTATIONS

An idea of Oughtred’s influence upon mathematical thought and teaching can be obtained from the spread of his
symbolism. This study indicates that the adoption was not immediate. The earliest use that we have been able to find of
Oughtred’s notation for proportion, A.B::C.D, occurs nineteen years after the Clavis mathematicae of 1631. In 1650
John Kersey brought out in London an edition of Edmund Wingates’ Arithmetique made easie, in which this notation is
used. After this date publications employing it became frequent, some of them being the productions of pupils of

Oughtred. We have seen it in Vincent Wing (1651),
[77]

 Seth Ward (1653),
[78]

 John Wallis (1655),
[79]

 in “R. B.,” a

schoolmaster in Suffolk,
[80]

 Samuel Foster (1659),
[81]

 Jonas Moore (1660),
[82]

 and Isaac Barrow (1657).
[83]

 In the latter
part of the seventeenth century Oughtred’s notation, A.B::C.D, became the prevalent, though not universal, notation in
Great Britain. A tremendous impetus to their adoption was given by Seth Ward, Isaac Barrow, and particularly by
John Wallis, who was rising to international eminence as a mathematician.

In France we have noticed Oughtred’s notation for proportion in Franciscus Dulaurens (1667),
[84]

 J. Prestet (1675),
[85]

R. P. Bernard Lamy (1684),
[86]

 Ozanam (1691),
[87]

 De l’Hospital (1696),
[88]

 R. P. Petro Nicolas (1697).
[89]

In the Netherlands we have noticed it in R. P. Bernard Lamy (1680),
[90]

 and in an anonymous work of 1690.
[91]

 In
German and Italian works of the seventeenth century we have not seen Oughtred’s notation for proportion.

In England a modified notation soon sprang up in which ratio was indicated by two dots instead of a single dot, thus
A:B::C:D. The reason for the change lies probably in the inclination to use the single dot to designate decimal fractions.
W. W. Beman pointed out that this modified symbolism (:) for ratio is found as early as 1657 in the end of the

trigonometric and logarithmic tables that were bound with Oughtred’s Trigonometria.
[92]

 It is not probable,
however, that this notation was used by Oughtred himself. The Trigonometria proper has Oughtred’s A.B::C.D
throughout. Moreover, in the English edition of this trigonometry, which appeared the same year, 1657, but subsequent to
the Latin edition, the passages which contained the colon as the symbol for ratio, when not omitted, are recast, and the
regular Oughtredian notation is introduced. In Oughtred’s posthumous work, Opuscula mathematica hactenus inedita,
1677, the colon appears quite often but is most likely due to the editor of the book.

We have noticed that the notation A:B::C:D antedates the year 1657. Vincent Wing, the astronomer, published in 1651 in
London the Harmonicon coeleste, in which is found not only Oughtred’s notation A.B::C.D but also the modified form of
it given above. The two are used interchangeably. His later works, the Logistica astronomica (1656), Doctrina
spherica (1655), and Doctrina theorica, published in one volume in London, all use the symbols A:B::C:D exclusively.
The author of a book entitled, An Idea of Arithmetick at first designed for the use of the Free Schoole at Thurlow in
Suffolk . . . . by R. B., Schoolmaster there, London, 1655, writes A:a::C:c, though part of the time he uses Oughtred’s
unmodified notation.

We can best indicate the trend in England by indicating the authors of the seventeenth century whom we have found using
the notation A:B::C:D and the authors of the eighteenth century whom we have found using A.B::C.D. The former notation
was the less common during the seventeenth but the more common during the eighteenth century. We have observed

the symbols A:B::C:D (besides the authors already named) in John Collins (1659),
[93]

 James Gregory (1663),
[94]



[77]

[78]

[79]

[80]

[81]

Christopher Wren (1668-69),
[95]

 William Leybourn (1673),
[96]

 William Sanders (1686),
[97]

 John Hawkins (1684),
[98]

Joseph Raphson (1697),
[99]

 E. Wells (1698),
[100]

 and John Ward (1698).
[101]

Of English eighteenth-century authors the following still clung to the notation A.B::C.D: John Harris’ translation of F.

Ignatius Gaston Pardies (1701),
[102]

 George Shelley (1704),
[103]

 Sam Cobb (1709),
[104]

 J. Collins in Commercium

Epistolicum (1712), John Craig (1718),
[105]

 Jo. Wilson (1724).
[106]

 The latest use of A.B::C.D which has come to
our notice is in the translation of the Analytical Institutions of Maria G. Agnesi, made by John Colson sometime before
1760, but which was not published until 1801. During the seventeenth century the notation A:B::C:D acquired almost
complete ascendancy in England.

In France Oughtred’s unmodified notation A.B::C.D, having been adopted later, was also discarded later than in England.
An approximate idea of the situation appears from the following data. The notation A.B::C.D was used by M. Carré

(1700),
[107]

 M. Guisnée (1705),
[108]

 M. de Fontenelle (1727),
[109]

 M. Varignon (1725),
[110]

 M. Robillard (1753),
[111]

 M.

Sebastien le Clerc (1764),
[112]

 Clairaut (1731),
[113]

 M. L’Hospital (1781).
[114]

In Italy Oughtred’s modified notation a, b::c, d was used by Maria G. Agnesi in her Instituzioni analitiche, Milano,
1748. The notation a:b::c:d found entrance the latter part of the eighteenth century. In Germany the symbolism

a:b=c:d, suggested by Leibniz, found wider acceptance.
[115]

It is evident from the data presented that Oughtred proposed his notation for ratio and proportion at a time when the need
of a specific notation began to be generally felt, that his symbol for ratio a.b was temporarily adopted in England and
France but gave way in the eighteenth century to the symbol a:b, that Oughtred’s symbol for proportion :: found almost
universal adoption in England and France and was widely used in Italy, the Netherlands, the United States, and to some
extent in Germany; it has survived to the present time but is now being gradually displaced by the sign of equality =.

Oughtred’s notation to express aggregation of terms has received little attention from historians but is nevertheless
interesting. His books, as well as those of John Wallis, are full of parentheses but they are not used as symbols of
aggregation in algebra; they are simply marks of punctuation for parenthetical clauses. We have seen that Oughtred
writes (a+b)² and √a+b thus, Q:a+b:, √:a+b:, or Q:a+b, √:a+b, using on rarer occasions a single dot in place of the
colon. This notation did not originate with Oughtred, but, in slightly modified form, occurs in writings from the
Netherlands. In 1603 C. Dibvadii in geometriam Evclidis demonstratio numeralis, Leyden, contains many expressions
of this sort, √·136+√2048, signifying √(136+√2048). The dot is used to indicate that the root of the binomial (not of 136
alone) is called for. This notation is used extensively in Ludolphi à Cevlen de circulo, Leyden, 1619, and in
Willebrordi Snellii De circuli dimensione, Leyden, 1621. In place of the single dot Oughtred used the colon (:),
probably to avoid confusion with his notation for ratio. To avoid further possibility of uncertainty he usually placed
the colon both before and after the algebraic expression under aggregation. This notation was adopted by John
Wallis and Isaac Barrow. It is found in the writings of Descartes. Together with Vieta’s horizontal bar, placed over two
or more terms, it constituted the means used almost universally for denoting aggregation of terms in algebra. Before

Oughtred the use of parentheses had been suggested by Clavius
[116]

 and Girard.
[117]

 The latter wrote, for instance,
√(2+√3). While parentheses never became popular in algebra before the time of Leibniz and the Bernoullis they were by
no means lost sight of. We are able to point to the following authors who made use of them: I. Errard de Bar-le-Duc

(1619),
[118]

 Jacobo de Billy (1643),
[119]

 one of whose books containing this notation was translated into English, and

also the posthumous works of Samuel Foster.
[120]

 J. W. L. Glaisher points out that parentheses were used by Norwood in

his Trigonometrie (1631), p. 30.
[121]

The symbol for the arithmetical difference between two numbers, ~, is usually attributed to John Wallis, but it
occurs in Oughtred’s Clavis mathematicae of 1652, in the tract on Elementi decimi Euclidis declaratio, at an
earlier date than in any of Wallis’ books. As Wallis assisted in putting this edition through the press it is possible, though
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not probable, that the symbol was inserted by him. Were the symbol Wallis’, Oughtred would doubtless have referred to

its origin in the preface. During the eighteenth century the symbol found its way into foreign texts even in far-off Italy.
[122]

It is one of three symbols presumably invented by Oughtred and which are still used at the present time. The others are ×
and ::.

The curious and ill-chosen symbols,  for “greater than,” and  for “less than,” were certain to succumb in their
struggle for existence against Harriot’s admirably chosen > and <. Yet such was the reputation of Oughtred that his
symbols were used in England quite extensively during the seventeenth and the beginning of the eighteenth century.
Considerable confusion has existed among algebraists and also among historians as to what Oughtred’s symbols really
were. Particularly is this true of the sign for “less than” which is frequently written . Oughtred’s symbols, or these

symbols turned about in some way, have been used by Seth Ward,
[123]

 John Wallis,
[124]

 Isaac Barrow,
[125]

 John

Kersey,
[126]

 E. Wells,
[127]

 John Hawkins,
[128]

 Tho. Baker,
[129]

 Richard Sault,
[130]

 Richard Rawlinson,
[131]

 Franciscus

Dulaurens,
[132]

 James Milnes,
[133]

 George Cheyne,
[134]

 John Craig,
[135]

 Jo. Wilson,
[136]

 and J. Collins.
[137]

General acceptance has been accorded to Oughtred’s symbol ×. The first printed appearance of this symbol for
multiplication in 1618 in the form of the letter x hardly explains its real origin. The author of the “Appendix” (be he
Oughtred or someone else) may not have used the letter x at all, but may have written the cross ×, called the St.
Andrew’s cross, while the printer, in the absence of any type accurately representing that cross, may have substituted the
letter x in its place. The hypothesis that the symbol × of multiplication owes its origin to the old habit of using directed
bars to indicate that two numbers are to be combined, as for instance in the multiplication of 23 and 34, thus,

2

|
3
×

3

|
4

7 8 2

has been advanced by two writers, C. Le Paige
[138]

 and Gravelaar.
[139]

 Bosmans is more inclined to the belief that
Oughtred adopted the symbol somewhat arbitrarily, much as he did the numerous symbols in his Elementi decimi

Euclidis declaratio.
[140]

Le Paige’s and Gravelaar’s theory finds some support in the fact that the cross ×, without the two additional vertical

lines shown above, occurs in a commentary published by Oswald Schreshensuchs
[141]

 in 1551, where the sign is written
between two factors placed one above the other.



[85]

[86]

CHAPTER V 
OUGHTRED’S IDEAS ON THE TEACHING OF MATHEMATICS

GENERAL STATEMENT

Nowhere has Oughtred given a full and systematic exposition of his views on mathematical teaching. Nevertheless, he
had very pronounced and clear-cut ideas on the subject. That a man who was not a teacher by profession should have
mature views on teaching is most interesting. We gather his ideas from the quality of the books he published, from his
prefaces, and from passages in his controversial writing against Delamain. As we proceed to give quotations unfolding
Oughtred’s views, we shall observe that three points receive special emphasis: (1) an appeal to the eye through suitable
symbolism; (2) emphasis upon rigorous thinking; (3) the postponement of the use of mathematical instruments until after
the logical foundations of a subject have been thoroughly mastered.

The importance of these tenets is immensely reinforced by the conditions of the hour. This voice from the past speaks
wisdom to specialists of today. Recent methods of determining educational values and the modern cult of utilitarianism
have led some experts to extraordinary conclusions. Laboratory methods of testing, by the narrowness of their range,
often mislead. Thus far they have been inferior to the word of a man of experience, insight, and conviction.

MATHEMATICS, “A SCIENCE OF THE EYE”

Oughtred was a great admirer of the Greek mathematicians—Euclid, Archimedes, Apollonius of Perga, Diophantus. But
in reading their works he experienced keenly what many modern readers have felt, namely, that the almost total absence
of mathematical symbols renders their writings unnecessarily difficult to read. Statements that can be compressed into a
few well-chosen symbols which the eye is able to survey as a whole are expressed in long-drawn-out sentences. A
striking illustration of the importance of symbolism is afforded by the history of the formula

ix=log(cos x+i sin x).

It was given in Roger Cotes’ Harmonia mensurarum, 1722, not in symbols, but expressed in rhetorical form, destitute of
special aids to the eye. The result was that the theorem remained in the book undetected for 185 years and was
meanwhile rediscovered by others. Owing to the prominence of Cotes as a mathematician it is very improbable that such
a thing could have happened had the theorem been thrust into view by the aid of mathematical symbols.

In studying the ancient authors Oughtred is reported to have written down on the margin of the printed page some of the
theorems and their proofs, expressed in the symbolic language of algebra.

In the preface of his Clavis of 1631 and of 1647 he says:

Wherefore, that I might more clearly behold the things themselves, I uncasing the Propositions and Demonstrations out
of their covert of words, designed them in notes and species appearing to the very eye. After that by comparing the
divers affections of Theorems, inequality, proportion, affinity, and dependence, I tryed to educe new out of them.

It was this motive which led him to introduce the many abbreviations in algebra and trigonometry to which reference has
been made in previous pages. The pedagogical experience of recent centuries has indorsed Oughtred’s view, provided
of course that the pupil is carefully taught the exact meaning of the symbols. There have been and there still are those
who oppose the intensive use of symbolism. In our day the new symbolism for all mathematics, suggested by the school
of Peano in Italy, can hardly be said to be received with enthusiasm. In Oughtred’s day symbolism was not yet the
fashion. To be convinced of this fact one need only open a book of Edmund Gunter, with whom Oughtred came in contact
in his youth, or consult the Principia of Sir Isaac Newton, who flourished after Oughtred. The mathematical works of
Gunter and Newton, particularly the former, are surprisingly destitute of mathematical symbols. The philosopher



[88]

[89]

[87]

Hobbes, in a controversy with John Wallis, criticized the latter for that “Scab of Symbols,” whereupon Wallis replied:

I wonder how you durst touch M. Oughtred for fear of catching the Scab. For, doubtlesse, his book is as much covered
over with the Scab of Symbols, as any of mine. . . . . As for my Treatise of Conick Sections, you say, it is covered

over with the Scab of Symbols, that you had not the patience to examine whether it is well or ill demonstrated.
[142]

Oughtred maintained his view of the importance of symbols on many different occasions. Thus, in his Circles of
Proportion, 1632, p. 20:

This manner of setting downe Theoremes, whether they be Proportions, or Equations, by Symboles or notes of words,
is most excellent, artificiall, and doctrinall. Wherefore I earnestly exhort every one, that desireth though but to looke
into these noble Sciences Mathematicall, to accustome themselves unto it: and indeede it is easie, being most
agreeable to reason, yea even to sence. And out of this working may many singular consectaries be drawne: which
without this would, it may be, for ever lye hid.

RIGOROUS THINKING AND THE USE OF INSTRUMENTS

The author’s elevated concept of mathematical study as conducive to rigorous thinking shines through the following
extract from his preface to the 1647 Clavis:

. . . . Which Treatise being not written in the usuall synthetical manner, nor with verbous expressions, but in the
inventive way of Analitice, and with symboles or notes of things instead of words, seemed unto many very hard;
though indeed it was but their owne diffidence, being scared by the newnesse of the delivery; and not any difficulty in
the thing it selfe. For this specious and symbolicall manner, neither racketh the memory with multiplicity of words, nor
chargeth the phantasie with comparing and laying things together; but plainly presenteth to the eye the whole course
and processe of every operation and argumentation.

Now my scope and intent in the first Edition of that my Key was, and in this New Filing, or rather forging of it, is, to
reach out to the ingenious lovers of these Sciences, as it were Ariadnes thread, to guide them through the intricate
Labyrinth of these studies, and to direct them for the more easie and full understanding of the best and antientest
Authors. . . . . That they may not only learn their propositions, which is the highest point of Art that most Students
aime at; but also may perceive with what solertiousnesse, by what engines of aequations, Interpretations,
Comparations, Reductions, and Disquisitions, those antient Worthies have beautified, enlarged, and first found out this
most excellent Science. . . . . Lastly, by framing like questions problematically, and in a way of Analysis, as if they
were already done, resolving them into their principles, I sought out reasons and means whereby they might be
effected. And by this course of practice, not without long time, and much industry, I found out this way for the helpe
and facilitation of Art.

Still greater emphasis upon rigorous thinking in mathematics is laid in the preface to the Circles of Proportion and in
some parts of his Apologeticall Epistle against Delamain. In that preface William Forster quotes the reply of Oughtred to
the question how he (Oughtred) had for so many years concealed his invention of the slide rule from himself (Forster)
whom he had taught so many other things. The reply was:

That the true way of Art is not by Instruments, but by Demonstration: and that it is a preposterous course of vulgar
Teachers, to begin with Instruments, and not with the Sciences, and so in-stead of Artists, to make their Scholers only
doers of tricks, and as it were Iuglers: to the despite of Art, losse of previous time, and betraying of willing and
industrious wits, vnto ignorance, and idlenesse. That the vse of Instruments is indeed excellent, if a man be an Artist:
but contemptible, being set and opposed to Art. And lastly, that he meant to commend to me, the skill of Instruments,
but first he would haue me well instructed in the Sciences.”

Delamain took a different view, arguing that instruments might very well be placed in the hands of pupils from the start.
At the time of this controversy Delamain supported himself by teaching mathematics in London and he advertised his
ability to give instruction in mathematics, including the use of instruments. Delamain brought the charge against
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Oughtred of unjustly calling “many of the [British] Nobility and Gentry doers of trickes and juglers.” To this Oughtred
replies:

As I did to Delamain and to some others, so I did to William Forster: I freely gave him my helpe and instruction in
these faculties: only this was the difference, I had the very first moulding (as I may say) of this latter: But Delamain
was already corrupted with doring upon Instruments, and quite lost from ever being made an Artist: I suffered not
William Forster for some time so much as speake of any Instrument, except only the Globe it selfe; and to explicate,
and worke the questions of the Sphaere, by the way of the Analemma: which also himselfe did describe for the present
occasion. And this my restraint from such pleasing avocations, and holding him to the strictnesse of percept, brought
forth this fruit, that in short time, even by his owne skill, he could not onely use any Instrument he should see, but also

was able to delineate the like, and devise others.
[143]

As representing Delamain’s views, we make the following selection from his Grammelogia (London, about 1633), the
part near the end of the book and bearing the title, “In the behalfe of vulgar Teachers and others,” where Delamain refers
to Oughtred’s charge that the scholars of “vulgar” teachers are “doers of tricks, as it were iuglers.” Delamain says:

. . . . Which words are neither cautelous, nor subterfugious, but are as downe right in their plainnesse, as they are
touching, and pernitious, by two much derogating from many, and glancing upon many noble personages, with too
grosse, if not too base an attribute, in tearming them doers of tricks, as it were to iuggle: because they perhaps
make use of a necessitie in the furnishing of themselves with such knowledge by Practicall Instrumentall
operation, when their more weighty negotiations will not permit them for Theoreticall figurative demonstration;
those that are guilty of the aspertion, and are touched therewith may answer for themselves, and studie to be more
Theoreticall, than Practicall: for the Theory, is as the Mother that produceth the daughter, the very sinewes and life
of Practise, the excellencie and highest degree of true Mathematicall Knowledge: but for those that would make but a
step as it were into that kind of Learning, whose onely desire is expedition, and facilitie, both which by the generall
consent of all are best effected with Instrument, rather then with tedious regular demonstrations, it was ill to checke
them so grosly, not onely in what they have Practised, but abridging them also of their liberties with what they may
Practise, which aspertion may not easily be slighted off by any glosse or Apologie, without an Ingenuous confession,
or some mentall reservation: To which vilification, howsoever, in the behalfe of my selfe, and others, I answer; That
Instrumentall operation is not only the Compendiating, and facilitating of Art, but even the glory of it, whole
demonstration both of the making, and operation is soly in the science, and to an Artist or disputant proper to be
knowne, and so to all, who would truly know the cause of the Mathematicall operations in their originall; But, for
none to know the use of a Mathematicall Instrumen[t], except he knowes the cause of its operation, is somewhat too
strict, which would keepe many from affecting the Art, which of themselves are ready enough every where, to
conceive more harshly of the difficultie, and impossibilitie of attayning any skill therein, then it deserves, because they
see nothing but obscure propositions, and perplex and intricate demonstrations before their eyes, whose unsavoury
tartnes, to an unexperienced palate like bitter pills is sweetned over, and made pleasant with an Instrumentall
compendious facilitie, and made to goe downe the more readily, and yet to retaine the same vertue, and working; And
me thinkes in this queasy age, all helpes may bee used to procure a stomacke, all bates and invitations to the
declining studie of so noble a Science, rather then by rigid Method and generall Lawes to scarre men away. All
are not of like disposition, neither all (as was sayd before) propose the same end, some resolve to wade, others to put
a finger in onely, or wet a hand: now thus to tye them to an obscure and Theoricall forme of teaching, is to crop their
hope, even in the very bud. . . . . The beginning of a mans knowledge even in the use of an Instrument, is first founded
on doctrinal precepts, and these precepts may be conceived all along in its use: and are so farre from being excluded,
that they doe necessarily concomitate and are contained therein: the practicke being better understood by the
doctrinall part, and this later explained by the Instrumentall, making precepts obvious unto sense, and the Theory
going along with the Instrument, better informing and inlightning the understanding, etc. vis vnita fortior, so as if that
in Phylosophy bee true, Nihil est [in] intellectu quod non prius fuit in sensu.

The difference between Oughtred and Delamain as to the use of mathematical instruments raises important questions.
Should the slide rule be placed in the hands of a boy before, or after, he has mastered the theory of logarithms? Should
logarithmic tables be withheld from him until the theoretical foundation is laid in the mind of the pupil? Is it a good thing
to let a boy use a surveying instrument unless he first learns trigonometry? Is it advisable to permit a boy to familiarize
himself with the running of a dynamo before he has mastered the underlying principles of electricity? Does the use of
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instruments ordinarily discourage a boy from mastery of the theory? Or does such manipulation constitute a natural and
pleasing approach to the abstract? On this particular point, who showed the profounder psychological insight, Oughtred
or Delamain?

In July, 1914, there was held in Edinburgh a celebration of the three-hundredth anniversary of the invention of
logarithms. On that occasion there was collected at Edinburgh university one of the largest exhibits ever seen of
modern instruments of calculation. The opinion was expressed by an experienced teacher that “weapons as those
exhibited there are for men and not for boys, and such danger as there may be in them is of the same character as any
form of too early specialization.”

It is somewhat of a paradox that Oughtred, who in his student days and during his active years felt himself impelled to
invent sun-dials, planispheres, and various types of slide rules—instruments which represent the most original
contributions which he handed down to posterity—should discourage the use of such instruments in teaching mathematics
to beginners. That without the aid of instruments he himself should have succeeded so well in attracting and inspiring
young men constitutes the strongest evidence of his transcendent teaching ability. It may be argued that his pedagogic
dogma, otherwise so excellent, here goes contrary to the course he himself followed instinctively in his self-education
along mathematical lines. We read that Sir Isaac Newton, as a child, constructed sun-dials, windmills, kites, paper
lanterns, and a wooden clock. Should these activities have been suppressed? Ordinary children are simply Isaac
Newtons on a smaller intellectual scale. Should their activities along these lines be encouraged or checked?

On the other hand, it may be argued that the paradox alluded to above admits of explanation, like all paradoxes, and that
there is no inconsistency between Oughtred’s pedagogic views and his own course of development. If he invented sun-
dials, he must have had a comprehension of the cosmic motions involved; if he solved spherical triangles
graphically by the aid of the planisphere, he must have understood the geometry of the sphere, so far as it relates to
such triangles; if he invented slide rules, he had beforehand a thorough grasp of logarithms. The question at issue does
not involve so much the invention of instruments, as the use by the pupil of instruments already constructed, before he
fully understands the theory which is involved. Nor does Sir Isaac Newton’s activity as a child establish Delamain’s
contention. Of course, a child should not be discouraged from manual activity along the line of producing interesting toys
in imitation of structures and machines that he sees, but to introduce him to the realm of abstract thought by the aid of
instruments is a different proposition, fraught with danger. A boy may learn to use a slide rule mechanically and, because
of his ability to obtain practical results, feel justified in foregoing the mastery of underlying theory; or he may consider
the ability of manipulating a surveying instrument quite sufficient, even though he be ignorant of geometry and
trigonometry; or he may learn how to operate a dynamo and an electric switchboard and be altogether satisfied, though
having no grasp of electrical science. Thus instruments draw a youth aside from the path leading to real intellectual
attainments and real efficiency; they allure him into lanes which are often blind alleys. Such were the views of Oughtred.

Who was right, Oughtred or Delamain? It may be claimed that there is a middle ground which more nearly represents the
ideal procedure in teaching. Shall the slide rule be placed in the student’s hands at the time when he is engaged in the
mastery of principles? Shall there be an alternate study of the theory of logarithms and of the slide rule—on the idea
of one hand washing the other—until a mastery of both the theory and the use of the instrument has been attained?
Does this method not produce the best and most lasting results? Is not this Delamain’s actual contention? We leave it to
the reader to settle these matters from his own observation, knowledge, and experience.

NEWTON’S COMMENTS ON OUGHTRED

Oughtred is an author who has been found to be of increasing interest to modern historians of mathematics. But no
modern writer has, to our knowledge, pointed out his importance in the history of the teaching of mathematics. Yet his
importance as a teacher did receive recognition in the seventeenth century by no less distinguished a scientist than Sir
Isaac Newton. On May 25, 1694, Sir Isaac Newton wrote a long letter in reply to a request for his recommendation on a
proposed new course of study in mathematics at Christ’s Hospital. Toward the close of his letter, Newton says:

And now I have told you my opinion in these things, I will give you Mr. Oughtred’s, a Man whose judgment (if any
man’s) may be safely relyed upon. For he in his book of the circles of proposition, in the end of what he writes about
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Navigation (page 184) has this exhortation to Seamen. “And if,” saith he, “the Masters of Ships and Pilots will take
the pains in the Journals of their Voyages diligently and faithfully to set down in severall columns, not onely the Rumb
they goe on and the measure of the Ships way in degrees, and the observation of Latitude and variation of their
compass; but alsoe their conjectures and reason of their correction they make of the aberrations they shall find, and the
qualities and condition of their ship, and the diversities and seasons of the winds, and the secret motions or agitations
of the Seas, when they begin, and how long they continue, how farr they extend and with what inequality; and what
else they shall observe at Sea worthy consideration, and will be pleased freely to communicate the same with
Artists, such as are indeed skilfull in the Mathematicks and lovers and enquirers of the truth: I doubt not but that there

shall be in convenient time, brought to light many necessary precepts which may tend to y
e
 perfecting of Navigation,

and the help and safety of such whose Vocations doe inforce them to commit their lives and estates in the vast Ocean
to the providence of God.” Thus farr that very good and judicious man Mr. Oughtred. I will add, that if instead of
sending the Observations of Seamen to able Mathematicians at Land, the Land would send able Mathematicians to

Sea, it would signify much more to the improvem
t
 of Navigation and safety of Mens lives and estates on that

element.
[144]

May Oughtred prove as instructive to the modern reader as he did to Newton!
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Sun dials, 5, 9, 50, 51, 52, 60, 92

Tannery, P., 71
Todhunter, 60
Torporley, 58
Triangles, spherical, 53, 54, 93
Trigonometria, 21, 36, 55, 75
Trigonometric functions, symbols for, 36, 37, 55, 56
Trigonometrie, 21, 35, 39
Trisection of angles, 28



Twysden, 59, 68, 69, 73

Varignon, 77
Vieta, 1, 2, 25, 32, 33, 35, 39-41, 45, 63, 67, 70, 71
Vlack, 65
Von Braunmühl, 39

Wadham College, 5, 53
Wallis, John, 1, 19, 27, 33, 45, 57-59, 63, 64, 66-74, 79-81, 86
Walmesley, D. C., 79
Ward, Bishop, 13
Ward, John, 76
Ward, Seth, 55, 58, 60, 68, 73, 74, 81
Watch-making, 18, 50
Weber, W. E., 48
Weddle, 56
Wells, E., 76, 82
Wharton, 60
Whitlock, B., 8, 9
Wilson, J., 77, 82
Wing, V., 73, 75
Wingate, E., 32, 47, 73
Wolf, Christian, 79
Wood, A., 60, 61
Wood, R., 18, 59
Wren, Christopher, 5, 58, 59, 76
Wright, E., 6, 27, 38, 54
Wright, S., 54
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